
CONDITIONAL LOWER BOUNDS ON THE DISTRIBUTION OF CENTRAL VALUES:
THE CASE OF MODULAR FORMS

Abstract. Radziwiłł and Soundararajan unveiled a connection between low-lying zeros and cen-
tral values of 𝐿-functions, which they instanciated in the case of quadratic twists of an elliptic
curve. This note addresses the case of the family of modular forms in the level aspect.

1. Introduction

Studying L-functions is of utmost importance in number theory at large. Two of their attached
data carry critical information: their zeros, which govern the distributional behavior of underly-
ing objects; and their central values, which are related to invariants such as the class number of a
eld extension or the rank of an elliptic curve. We refer to [3] and references therein for further
hindsight.

The spacings of zeros of families of 𝐿-functions are well-understood: they are distributed along
a universal law, independent of the exact family under consideration, as proven by Rudnick and
Sarnak. This recovers the behavior of spacings between eigenangles of the classical groups of
random matrices. However, distribution of low-lying zeros attached to every reasonable family
of 𝐿-functions does depend upon the specic setting under consideration. See [7] for a discussion
in a general setting.

More precisely, let 𝐿(𝑠, 𝑓 ) be an 𝐿-function attached to an arithmetic object 𝑓 . Consider its non-
trivial zeros written in the form 𝜌 𝑓 =

1
2 +𝑖𝛾 𝑓 where 𝛾 𝑓 is a priori a complex number. We renormal-

ize the mean spacing of the zeros to 1 by setting 𝛾 𝑓 = log 𝑐 (𝑓 )𝛾 𝑓 /2𝜋 . Let ℎ be an even Schwartz
function onRwhose Fourier transform is compactly supported, in particular it admits an analytic
continuation to all C. The one-level density attached to 𝑓 is dened by

𝐷 (𝑓 , ℎ) =
∑︁
𝛾𝑓

ℎ
(
𝛾 𝑓

)
. (1.1)

The analogy with the behavior or small eigenangles of random matrices led Katz and Sarnak to
formulate the so-called density conjecture, claiming the same universality for the types of sym-
metry of families (understood in a reasonable sense, see [7]) of 𝐿-functions as those arising for
classical groups of random matrices.

Conjecture 1 (Katz-Sarnak). Let F be a family of 𝐿-functions, andF𝑋 a nite truncation increasing
to F when 𝑋 grows. Then for all even Schwartz function on R with compactly supported Fourier
transform, there is one classical group 𝐺 among U, SO(even), SO(odd), O or Sp such that

1
|F𝑋 |

∑︁
𝑓 ∈F𝑋

𝐷 (𝑓 , ℎ) −−−−→
𝑋→∞

∫
R
ℎ(𝑥)𝑊𝐺 (𝑥)𝑑𝑥, (1.2)
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where𝑊𝐺 (𝑥) is the explicit distribution function modeling the distribution of the eigenangles of the
corresponding group of random matrices1. The family F is then said to have the type of symmetry
of 𝐺 .

This distribution of central values are also nely understood, and the Keating-Snaith conjecture
predicts that the logarithmic central values log𝐿( 12 , 𝑓 ) are asymptotically distributed according
to a normal distribution, with explicit mean and variance depending on the family.

Conjecture 2 (Keating-Snaith). For any positive real numbers 𝛼 < 𝛽 , there is a mean 𝑀F and a
variance 𝑉F such that

1
|𝐻𝑘 (𝑞) |

�����
{
𝑓 ∈ 𝐻𝑘 (𝑞) :

log𝐿( 12 , 𝑓 ) −𝑀F

𝑉F
∈ (𝛼, 𝛽)

}����� −−−−→𝑋→∞

1
√
2𝜋

∫ 𝛽

𝛼

𝑒−𝑥
2/2𝑑𝑥, (1.3)

when 𝑋 grows to innity. In particular, the family of the logarithmic central values 𝐿( 12 , 𝑓 ) equidis-
tributes asymptotically with respect to a normal distribution.

Radziwiłł and Soundararajan [6] established a general principle that any restricted result towards
Conjecture 1, which in particular implies lower bound on the non-vanishing of central L-values,
can be rened to show that most such L-values have the typical size predicted by Conjecture 2.
They instanciated this technique in the case of quadratic twists of a given elliptic curve and
suggested the wide applicability of this approach, in particular in the case of modular forms
building on the pioneering work of Iwaniec, Luo and Sarnak [2]. This short note explains how to
do so in the case of modular forms in the level aspect.

More precisely, for integers 𝑘 > 2 and 𝑞 > 1, let 𝐻𝑘 (𝑞) be an orthogonal basis of primitive Hecke
eigenforms, which is a basis of the space of newforms 𝑆new

𝑘
(𝑞). We let 𝑐 (𝑓 ) = 𝑘2𝑞 the analytic

conductor of 𝑓 . Introduce for a general sequence (𝑎 𝑓 )𝑓 ∈𝐻𝑘 (𝑞) the harmonic average∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑎 𝑓 :=

Γ(𝑘 − 1)
(4𝜋)𝑘−1

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑎 𝑓

‖ 𝑓 ‖2 (1.4)

which includes the suitable weights in order to apply the Petersson trace formula. In this setting,
the seminal work of Iwaniec, Luo and Sarnak [2] and the recent achievement of Baluyot, Chandee
and Li [1] obtain the following restricted statement towards Conjecture 1.

Theorem 1 (Iwaniec, Luo, Sarnak & Baluyot, Chandee, Li). For any smooth function Ψ compactly
supported and any Schwartz function Φ such that its Fourier transform Φ̂ is supported into (−4, 4),
we have

lim
𝑄→∞

1
𝑁 (𝑄)

∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝐷 (𝑓 ,Φ) −→

∫
R
𝑊𝑂Φ = Φ̂(0) + 1

2
Φ(0), (1.5)

where𝑊𝑂 = 1 + 1
2𝛿𝑂 is the orthogonal density and 𝑁 (𝑄) is the weighted cardinality of the family,

i.e.

𝑁 (𝑄) =
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
1. (1.6)

1See e.g. [2] for the precise formulas of these density functions.
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Building on this result and exploiting the methodology outlined by Radziwiłł and Soundararajan,
we prove the following statement towards Conjecture 2.

Theorem 2. Let 𝐻𝑘 (𝑞) be a basis of modular Hecke eigenforms of weight 𝑘 > 2, level 𝑞 > 1 and
trivial nebentypus. We have, for any 𝛼 < 𝛽 ,

1
𝑁 (𝑄)

�����
{
𝑓 ∈ 𝐻𝑘 (𝑞) :

log𝐿( 12 , 𝑓 ) −
1
2 log log 𝑐 (𝑓 )√︁

log log 𝑐 (𝑓 )
∈ (𝛼, 𝛽)

}����� > 5
8

1
√
2𝜋

∫ 𝛽

𝛼

𝑒−𝑥
2/2𝑑𝑥 + 𝑜 (1). (1.7)

Note that [6] mentions the analogous result in the weight aspect on average over the weight, for
the full modular group.

A forthcoming work explores this technique for broader classes of functions, with emphasis on
the needed structural knowledge in order for it to work.

1.1. Strategy of proof and structure of the paper. In Section 2 we recall the needed deni-
tions on modular L-functions. In particular, explicit formulas relate central values of L-functions
to sums of modular coecients over primes, so that most of the study reduces to understanding
such sums. In Section 2.4 we establish results on sums of powers of modular coecients that
will be of critical importance in Section 3 where moments of these sums are shown to match the
moments of the normal distribution. Section 4 concludes the proof by showing that the extra
terms arising in the explicit formula, in the guise of sum over zeros, are negligible except for a
small proportion of modular forms.

Remark. Radziwiłł and Soundararajan [6] outline a general strategy to prove such results, but in
the specic case they address they rely on the Poisson summation formula to estimate character
sums, as well as their complete multiplicativity. These tools are however not as neat in the case
of modular coecients, and it requires the inductive use of Hecke relations and of trace formulas,
as recently shown in the work [4] in its study of centered moments of the one-level density.

2. Odds and ends

2.1. Modular L-functions. Let 𝑓 be a holomorphic cusp newform of weight𝑘 , level𝑞 and trivial
nebentypus. It has an attached L-function dened by

𝐿(𝑠, 𝑓 ) =
∞∑︁
𝑛=1

𝑎 𝑓 (𝑛)
𝑛𝑠

(2.1)

where 𝑎 𝑓 (𝑛) is its Fourier coecient, dened by the Fourier expansion

𝑓 (𝑧) =
∑︁
𝑛>1

𝑎 𝑓 (𝑛) (4𝜋𝑛)𝑘/2𝑒 (𝑛𝑧). (2.2)

In this normalization, Deligne’s bound states that 𝑎(𝑛) � 𝑑 (𝑛) � 𝑛𝜀 , where 𝑑 (𝑛) denotes the
divisor function. In particular, the Dirichlet series (8) converges for all<(𝑠) > 1. The L-function
𝐿(𝑠, 𝑓 ) can be completed by explicit gamma factors so that we have the functional equation

Λ(𝑠, 𝑓 ) :=
(√

𝑞

2𝜋

)𝑠
Γ(𝑠 + 1

2 ) = 𝜀 𝑓Λ(1 − 𝑠, 𝑓 ) (2.3)
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where 𝜀 𝑓 ∈ {±1} is the root number of 𝑓 . For 𝑓 a primitive Hecke eigenform, we also have the
Euler product

𝐿(𝑠, 𝑓 ) =
∏
𝑝

(1 − 𝑎 𝑓 (𝑝)𝑝−𝑠 + 𝑝−2𝑠)−1 =
∏
𝑝

(1 − 𝛼 𝑓 (𝑝)𝑝−𝑠)−1(1 − 𝛽 𝑓 (𝑝)𝑝−𝑠)−1 (2.4)

where the sum is over prime numbers 𝑝 , and 𝛼 𝑓 (𝑝), 𝛽 𝑓 (𝑝) ∈ C are called the spectral parameters
of 𝑓 at 𝑝 . This expression encapsulates the Hecke relations satised by the coecients. By taking
the logarithmic derivative of this expression, we obtain

− 𝐿′

𝐿
(𝑠, 𝑓 ) =

∑︁
𝑛>1

Λ𝑓 (𝑛)
𝑛𝑠

(2.5)

where Λ𝑓 (𝑛) = (𝛼 𝑓 (𝑝)𝑘 + 𝛽 𝑓 (𝑝)𝑘) log(𝑝) if 𝑛 = 𝑝𝑘 is a prime power, and Λ𝑓 (𝑛) = 0 otherwise.

2.2. Explicit formula for sums over zeros. We have the celebrated Weil explicit formula, re-
lating sum over zeros of L-functions to a sum over primes of its spectral parameters (see [2, (4.11)]
or [4, (3.2)]):

𝐷 (𝑓 ,Φ) = Φ̂(0) − 2
log 𝑐 (𝑓 )

∑︁
𝑝

∑︁
𝜈>1

(𝛼 𝑓 (𝑝)𝜈 + 𝛽 𝑓 (𝑝)𝜈 )
log𝑝
𝑝𝜈/2

Φ̂

(
𝜈 log𝑝
log 𝑐 (𝑓 )

)
+𝑂

(
1

log 𝑐 (𝑓 )

)
. (2.6)

Using the relations between coecients and spectral parameters, and the bounds on 𝑎 𝑓 (𝑛), we
obtain that the terms 𝜈 > 3 contribute as an error term, so that we deduce as in [2, Lemma 4.1]
the following expansion of the one-level density.

Proposition 1 (Explicit formula for sums over zeros). We have

𝐷 (𝑓 ,Φ) = Φ̂(0) + 1
2Φ(0) + 𝑃 (1) (𝑓 ,Φ) + 𝑃 (2) (𝑓 ,Φ) +𝑂

(
log log 𝑐 (𝑓 )
log 𝑐 (𝑓 )

)
(2.7)

where, for 𝜈 > 1, we let

𝑃 (𝜈) (𝑓 ,Φ) = 2
log 𝑐 (𝑓 )

∑︁
𝑝

𝑎 𝑓 (𝑝𝜈 )
log𝑝
𝑝𝜈/2

Φ̂

(
𝜈 log𝑝
log 𝑐 (𝑓 )

)
. (2.8)

2.3. Explicit formula for central values. The connection between central values of L-functions,
sums over primes and sums over zeros dates back to Selberg, and can be found in [6, Proposition 1]
in the case of quadratic characters. The proof carries on generally.

Proposition 2 (Explicit formula for central values). Assume that 𝐿( 12 , 𝑓 ) is nonzero. We have, for
all 𝑥 6 𝑐 (𝑓 ),

𝐿( 12 , 𝑓 ) = 𝑃 (𝑓 , 𝑥) − 1
2 log log𝑥 +𝑂 ©« log 𝑐 (𝑓 )log𝑥

+
∑︁
𝛾𝑓

log(1 + (𝛾 𝑓 log𝑥)−2)
ª®¬ (2.9)

where

𝑃 (𝑓 , 𝑥) =
∑︁
𝑝<𝑥
𝑝-𝑞

𝑎 𝑓 (𝑝)
𝑝1/2

. (2.10)
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2.4. Sums over primes of coecients. A central part of the argument consists in studying the
distribution of the sums over primes 𝑃 (𝑓 , 𝑥) through the moment methods (see Section 3). In
doing so, sums of products of Fourier coecients will arise, and we give the necessary results
here. Inspired by [4], introduce the notation, for any integer 𝑎 > 1,

𝐹 (𝑝, 𝑎) :=
𝑎 𝑓 (𝑝)𝑎

𝑝𝑎/2
. (2.11)

We state in this section the needed estimates for the sums over primes of such powers of co-
ecients. Informally, the powers 𝑎 = 1 will be small by Perron formula and lower bounds on
L-functions, powers 𝑎 = 2 will have a nontrivial size and will contribute ultimately by Rankin-
Selberg type results, and higher powers 𝑎 > 3 will contribute negligibly.

Lemma 1 (Large parts). We have, for all 𝑎 > 3,∑︁
𝑝<𝑥

𝐹 (𝑝, 𝑎) � 1. (2.12)

Proof. Using Deligne’s bound 𝑎 𝑓 (𝑝) � 1, the result is clear since the sum converges absolutely,
as does the sum of 𝑝−3/2. �

Lemma 2 (2-parts). We have ∑︁
𝑝<𝑥

𝐹 (𝑝, 2) = log log(𝑥) +𝑂 (1) . (2.13)

Proof. This is a consequence of the Hecke relations and of Rankin-Selberg theory, see for instance
[5, Lemma 3]. �

Lemma 3 (1-parts). We have, for all 𝑛 > 1,∑︁
𝑝𝑖≠𝑝 𝑗

𝑛∏
𝑖=1

𝐹 (𝑝𝑖, 1) � 1 (2.14)

Proof. This is analogue to [4, Lemma 2.12]. The proof consists in an induction on the number
of terms, and boils down to adding the missing primes (showing it is of negligible impact by the
above lemmas), and then using a Perron formula to relate the sought sum to 𝐿′/𝐿, on which we
have bounds that are enough for the result.

Their result [4, Lemma 2.12] reads∑︁
𝑝6𝑥

(
𝑏 𝑓 (𝑝) :=

𝑎 𝑓 (𝑝) log(𝑝)
𝑝1/2

)
� log(𝑥) (2.15)

and by partial summation, we therefore deduce∑︁
𝑝6𝑥

𝑎 𝑓 (𝑝)
𝑝1/2

=
∑︁
𝑝6𝑥

𝑏 𝑓 (𝑝)
log𝑝

=
∑︁
𝑝6𝑥

(∑︁
𝑝 ′6𝑝

𝑏 𝑓 (𝑝′)
)

1
𝑝 log2 𝑝

�
∑︁
𝑝6𝑥

1
𝑝 log𝑝

� 1 (2.16)

giving the desired result. �
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Remark. Note that this “rough" bound on the 1-parts will not be sucient to bound the whole
sum over the family, and the harmonic average (in the guide of trace formulas) will have to be
fully exploited in order to get enough cancellations. This bound will however be sucient to
address number of cases.

3. Moments

By the above explicit formula, a critical quantity to understand in order to control the distribution
of the central values is the sums over primes 𝑃 (𝑓 , 𝑥), and this will be investigated by means of
the moment method as in [6]. The following result is analogue to [4, Theorem 3.1].

Proposition 3 (Moment property). We have, for all 𝑘 > 1,
1

𝑁 (𝑄)
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)𝑘Φ

(
𝑐 (𝑓 )
𝑋

)
= (𝑀𝑘 + 𝑜 (1)) log log(𝑥)𝑘/2 (3.1)

where we introduced the 𝑘-th Gaussian moment

𝑀𝑘 =
1

√
2𝜋

∫
R
𝑥𝑘𝑒−𝑥

2/2𝑑𝑥 =
𝑘!

2𝑘/2(𝑘/2)!
. (3.2)

Proof. We follow the strategy of [6, Proposition 3] using the tools developed in [4, Proposition
4.1], adapting it to the specic sum over primes 𝑃 (𝑓 , 𝑥) arising in the explicit formula. Expanding
the power 𝑃 (𝑓 , 𝑥)𝑘 in ∑︁

𝑞>1
Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)𝑘Φ

(
𝑐 (𝑓 )
𝑋

)
(3.3)

we are reduced to study sums of the type∑︁
𝑞>1

Ψ

(
𝑞

𝑄

)
Φ

(
𝑘2𝑞

𝑋

) ∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

𝑎 𝑓 (𝑝1) · · ·𝑎 𝑓 (𝑝𝑘)√
𝑝1 · · · 𝑝𝑘

. (3.4)

Recalling the denition of 𝐹 (𝑝, 𝑎), this expression splits into a sum of sums of the type∑︁
𝑞>1

Ψ

(
𝑞

𝑄

)
Φ

(
𝑘2𝑞

𝑋

) ∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝑎𝑖) (3.5)

so that it is sucient to study these. We split into dierent cases according to the number of
conspiring primes (i.e. the size of the powers 𝑎𝑖 ), and use the lemmas established in Section 2.4
to treat each part. The cases are:

• Case 1: each power is at least 2, at least one is larger
• Case 2: each power 𝑎𝑖 is 2
• Case 3: exactly one power is 1
• Case 4: at least two powers are 1, but not all
• Case 5: each power is 1

In what follows, the sums are understood as consisting in dierent primes, otherwise explicitly
stated (maybe add a “total" or a sign to emphasize it, when we add primes; or better a prime when
the primes are dierent: if they are equal, merge them in a single 𝐹 (𝑝, 𝑎 + 𝑏)).

6



Case 1: each power is at least 2, at least one being larger than 2. By Lemma 1, we have∑︁
𝑝<𝑥

𝐹 (𝑝, 3) = 𝑂 (1). (3.6)

Hence, in the the unrestricted sum (??) over primes (i.e. removing the distinctness condition) each
term with a power 2 contributes as log log(𝑥) by Lemma 2, and the sums with powers larger than
2 will contribute as 𝑂 (1). All in all, the whole contribution will be 𝑜 (log log(𝑥)𝑘/2).
The cost of removing the distinctness condition is given by factors of the type (??) with some
primes subject to being equal instead of dierent. This amounts to increasing the powers, since
the very denition implies the property 𝐹 (𝑝, 𝑎)𝐹 (𝑝,𝑏) = 𝐹 (𝑝, 𝑎 + 𝑏), and reducing the number of
factors, so that the result follows inductively.

Case 2: each power is 2. By Lemma 2, we have∑︁
𝑝<𝑥

𝐹 (𝑝, 2) =
∑︁
𝑝<𝑥

𝑎 𝑓 (𝑝)2

𝑝
= log log(𝑥) +𝑂 (1). (3.7)

Hence, taking the product of all pairs of primes, we get a contribution of (1 + 𝑜 (1)) log log(𝑥)𝑘/2
for the unrestricted sum over primes.

The cost of removing the distinctness condition is given by similar sums with extra equality
conditions, so that some of the factors will have a power larger than 2, thus falling into Case 1,
hence negligible compared to the main contribution of the unrestricted sum.

Case 3: Exactly one 1. We prove this case by induction. If 𝑘 = 2, we cannot be in case 3, so this is
empty. If 𝑘 = 3, then case 3 arises with the partition 3 = 1 + 2, i.e. we have to bound the sum

𝑆 =
1

𝑁 (𝑄)
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1

𝐹 (𝑝1, 2)
∑︁
𝑝2≠𝑝1

𝐹 (𝑝2, 1). (3.8)

We add the missing primes at a negligible cost of
∑

𝑝 𝐹 (𝑝, 3) � 1 by Lemma 1. We then expand,
bound the 2-part by Lemma 2 which gives log log(𝑥), and bound the 1-part by Lemma 3, which
is 𝑂 (1), so that we obtain a contribution bounded by log log(𝑥) = 𝑜 (log log(𝑥)𝑘/2).
We now assume that 𝑘 > 4, and assume inductively the properties for smaller values. Since 𝑘 > 4,
there is at least one power larger than 2, or at least two powers 2. We will address both cases
separately.

Consider the case when there is a part larger than 2. In the unrestrict sum, the large powers will
contribute as𝑂 (1) by Lemma 1. Each part with a power 2will contribute as log log(𝑥) by Lemma
2. For the power 1, we use Lemma 3 to conclude, bounding its contribution by a constant. The
cost of removing the conspiring primes is smaller, since it will increase the powers and reduce
the number of factors, hence falling into the induction hypothesis.

Consider the case when there are at least two parts having a 2. For the unrestricted sum, induction
on the number 𝑘′ of 2-parts shows that the product is of size log log(𝑥)𝑘 ′/2, but the 1-part will
give a smaller contribution by the Lemma 3. The cost of removing the equal primes is even
smaller, since it only increases the powers and reduces the number of terms, exactly as above.
This concludes the induction.
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Case 4: at least two 1’s, but not all. We use Hölder inequality as in [4, Lemma A.3] and induction.
Each 2-part contributes as log log(𝑥) as above. For the two 1-parts, we add back the terms 𝑝𝑖 = 𝑝 𝑗

in order to have a full sum: this is negligible by induction as above, since it only increases powers
and reduces the number of terms.

The remaining full sum is amenable to Hölder inequality and moment bounds. This is the ana-
logue of [4, Theorem 3.1] and this has to be assumed as the induction hypothesis: for all 𝑘 > 1,

1
𝑁 (𝑄)

∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)𝑘 = (𝑀𝑘 + 𝑜 (1)) log log(𝑥)𝑘/2. (3.9)

Proof. We follow the strategy of [4, Lemma 3.7]. We use induction on 𝑘 > 1. The base case, where
only one 1-part will remain: is exactly case 5, which will be dealt with below (independently of
these proofs). Assume inductively that the proposition holds for all 𝑘′ < 𝑘 .

First, we apply Lemma 2 to address the 2-parts and pick half as many factors log log(𝑥), and
Lemma 1 to address the large parts which do not grow. We are therefore left to bound a sum of
the form

1
𝑁 (𝑄)

∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝐷 (𝑥)

∑︁
𝑝𝑖≠𝑝 𝑗

∏
𝑖

𝐹 (𝑝𝑖, 1), (3.10)

where 𝐷 (𝑥) is the product of the terms containing powers larger than 1: it has a negligible con-
tribution by the above three cases, so that it suces to show that the expression with 1’s is
bounded. The 1-parts have to be formally separated, this will be done viaHölder inequality, what
will induce extra powers; justifying the need of the “moment type" property used as induction
hypothesis.

We add the missing primes 𝑝𝑖 = 𝑝 𝑗 , analogously to [4, Lemma A.4]. Letting 𝑘 be the number of
1-parts and writing

∑︁
𝑝𝑖≠𝑝 𝑗

16𝑖≠ 𝑗6𝑘

=
∑︁
𝑝𝑖≠𝑝 𝑗

26𝑖≠ 𝑗6𝑘

−
𝑘∑︁
𝑖=2

∑︁
𝑝𝑖≠𝑝 𝑗
𝑝1=𝑝𝑖

26𝑖≠ 𝑗6𝑘

=
∑︁
𝑝𝑖≠𝑝 𝑗

26𝑖≠ 𝑗6𝑘

−(𝑘 − 1)
∑︁
𝑝𝑖≠𝑝 𝑗
𝑝1=𝑝2

26𝑖≠ 𝑗6𝑘

. (3.11)

In this resulting right hand side, the rst sum has one less term and is hence amenable to the
induction hypothesis, while the second sum has the terms 𝐹 (𝑝1, 1) and 𝐹 (𝑝2, 1) colliding into
𝐹 (𝑝1, 2) since 𝑝1 = 𝑝2, hence also amenable to the induction hypothesis.

Now that we added the missing primes, we need to show the negligibility of

𝑆′ :=
1

𝑁 (𝑄)
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝𝑖

𝐹 (𝑝𝑖, 1). (3.12)
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We use Hölder inequality to separate the sums over the spectral family, with Miller’s choices for
the exponents 𝜉𝑖 . We have

𝑆′ 6
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∏
𝑖

�����∑︁
𝑝𝑖

𝐹 (𝑝𝑖, 1)
�����𝑁 (𝑄)−𝜉𝑖

�
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
(2, 3𝑝𝑎𝑟𝑡𝑠)

∏
𝑖

(
|𝐹 (𝑝𝑖, 1) |𝜉

−1
𝑖 𝑁 (𝑄)−1

)𝜉𝑖
�

∏
𝑖

©«
∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
|𝐹 (𝑝𝑖, 1) |𝜉

−1
𝑖 𝑁 (𝑄)−1ª®¬

𝜉𝑖

and this last sum is exactly a moment of 𝐹 (𝑝𝑖, 𝑎) (with the specic choices of 𝜉𝑖 done by Miller, so
that 𝜉−1𝑖 are indeed integers smaller than 𝑘), with less terms that we took out in the 2-parts and
large parts. Hence, the induction step is complete. �

Case 5: each power is 1. This is the hard part, and the one needing to make use of the harmonic
sum over the family, i.e. trace formulas. We have to prove the following bound on the 1-parts:

1
𝑁 (𝑄)

∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝𝑖≠𝑝 𝑗

∏
𝑖

𝐹 (𝑝𝑖, 1) = 𝑜 (log log(𝑥)𝑘/2). (3.13)

The strategy is as follows: we complete the sum over newforms 𝑓 ∈ 𝐻𝑘 (𝑞) as a full spectral sum,
including oldforms, as in [4, Lemma 2.6] (see (4.2) therein) or [2], in order to apply trace formulas.
The rough bounds given in Lemma 3 allows to truncate the resulting sum as in [4, Section 4.1]
up to an error term. We can add the primes dividing the level at the cost of an error term too, by
means of Petersson trace formula.

The resulting spectral sum is therefore amenable to the Petersson trace formula, that translates it
into an arithmetic sum. Swapping summations and changing variables as in [1] leads to a similar
arithmetic sum with dierent functions than J-Bessel. Such a sum can be translated back into a
spectral sum, by means of the Kuznetsov trace formula: the sum is now over dierent levels, but
include the whole spectrum. The resulting function in our case satisfy exactly the same bound
as in [4, Lemma 4.3], and they can be bounded mutatis mutandis. �

As in [6], this essentially allows to say that the 𝑃 (𝑓 , 𝑥), hence the central values, mimicks the
behavior of a normal distribution, in phase with the Keating-Snaith conjecture. We encapsulate
in the following statement the distributional consequence of this moment method:

Proposition 4. We have, for all sequence (𝑎 𝑓 )𝑓 ∈𝐻𝑘 (𝑞) ,∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑃 (𝑓 ,𝑥)/
√
log log𝑥∈(𝛼,𝛽)

𝑎 𝑓 = (𝑀 (𝛼, 𝛽) + 𝑜 (1))
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝑎 𝑓 . (3.14)
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Proof. Asymptotically, Proposition 3 proved that the 𝑘-th moment of 𝑃 (𝑓 , 𝑥) behaves as the 𝑘-th
moment of the normal distribution, i.e. when 𝑋 grows to innity,∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)𝑘Φ

(
𝑐 (𝑓 )
𝑋

)
∼

∫
R
𝑥𝑘𝑒−𝑥

2/2𝑑𝑥
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
Φ

(
𝑐 (𝑓 )
𝑋

)
(3.15)

so we deduce that, for any polynomial 𝑄 ∈ R[𝑋 ],∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑄 (𝑃 (𝑓 , 𝑥))Φ
(
𝑐 (𝑓 )
𝑋

)
∼

∫
𝑄 (𝑥)𝑒−𝑥2/2𝑑𝑥

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Φ

(
𝑐 (𝑓 )
𝑋

)
(3.16)

and, by approximating the characteristic function 1(𝛼,𝛽) in 𝐿1-norm by a polynomial𝑄 , we deduce
that ∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽)

𝑎 𝑓 =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
1(𝛼,𝛽) (𝑃 (𝑓 , 𝑥))𝑎 𝑓 (3.17)

∼
∫
R
1(𝛼,𝛽) (𝑥)𝑒−𝑥

2/2𝑑𝑥
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝑎 𝑓 = 𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑎 𝑓 (3.18)

as claimed. �

A similar result has to be available when weighted by one-level densities (analogously to [6,
Proposition 3, second part]):

Proposition 5 (Weighted moments property). We have

1
𝑁 (𝑄)

∑︁
𝑞>1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)𝑘𝐷 (𝑓 , ℎ)Φ

(
𝑐 (𝑓 )
𝑋

)
= (𝑀𝑘 + 𝑜 (1)) log log(𝑥)𝑘/2

∫
R
𝑊𝑂ℎ. (3.19)

In other words, this proposition means that we can decouple the one-level density statement and
the moment property, both exploiting trace formulas. The proof uses dierent mechanics than
[6], since they instead use Poisson formula for the sum of characters, since they have complete
multipliciativity. We need to make a ner analysis as in [4] and [1].

Proof. Expand the power 𝑃 (𝑓 , 𝑥)𝑘 so that we have to deal with sums of the form∑︁
𝑝𝑖<𝑥

∑︁
𝑞,𝑓 ∈𝐻𝑘 (𝑞)

𝑎 𝑓 (𝑝1) · · ·𝑎 𝑓 (𝑝𝑘)√
𝑝1 · · · 𝑝𝑘

𝐷 (𝑓 , ℎ)Φ
(
𝑐 (𝑓 )
𝑋

)
(3.20)

The innermost one-level density is understood by Proposition 1 and can be written as

𝐷 (𝑓 , ℎ) = ℎ̂(0) + 1
2ℎ(0) + 𝑃 (1) (𝑓 , 𝑥) + 𝑃 (2) (𝑓 , 𝑥) + 𝑜 (...) (3.21)

Note that ℎ̂(0) + 1
2ℎ(0) =

∫
ℎ𝑊𝑂 is the limiting one-level density. The constant part in this

expression can therefore be pulled out of the sum, and the Proposition 3 therefore is applicable
as it stands and gives a contribution of

(𝑀𝑘 + 𝑜 (1)) log log(𝑥)𝑘/2
∫
R
𝑊𝑂ℎ (3.22)
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so that it remains to prove that the remaining contributions are negligible. We therefore have to
understand sums of the form∑︁

𝑝𝑖<𝑥

∑︁
𝑞,𝑓 ∈𝐻𝑘 (𝑞)

𝑎 𝑓 (𝑝1) · · ·𝑎 𝑓 (𝑝𝑘)√
𝑝1 · · · 𝑝𝑘

𝑃 (𝜈) (𝑓 , 𝑥)Φ
(
𝑐 (𝑓 )
𝑋

)
(3.23)

where 𝜈 ∈ {1, 2}. We are hence essentially adding an extra coecient since 𝑃 (𝜈) (𝑓 , 𝑥) is a
weighted sum of coecients. The contribution therefore adds a coecient 𝑎 𝑓 (𝑝𝜈 ) for 𝜈 ∈ {1, 2}.
For 𝜈 = 1, this can be bounded by one of the cases 3, 4 or 5, all negligible in the above proposi-
tion. For 𝜈 = 2, this enters into one of the above cases, which are all negligible except in the case
where all the powers are 2, case in which the contribution of 𝑃 (2) is in fact of constant size, see
[4, Lemma 2.9]. For 𝜈 = 1, this falls in cases 3, 4 or 5. �

4. Proof of the theorem

The above tools being now at hand, we follow the strategy presented in [6]. We will show that
there are not many small zeros by an amplication process, which will be used to prove that the
sum over zeros in the explicit formula (16) contributes as an error term. The moment method
will then allow to select the values for which we are in the desired range, giving the result.

4.1. Amplication of small zeros. The following result, analogue of [6, Lemma 1], uses the
“moment method" to quantify the proportion of 𝑓 ∈ F such that 𝑃 (𝑓 , 𝑥) falls into a specic
range; and the low-lying zeros result to jointly quantify the proportion of 𝑓 ∈ 𝐻𝑘 (𝑞) having not
too many small zeros.

Proposition 6. The smooth averaged number of 𝑓 ∈ 𝐻𝑘 (𝑞) such that 𝑃 (𝑓 , 𝑥)/
√︁
log log𝑥 ∈ (𝛼, 𝛽)

and such that there are no zeros with |𝛾 𝑓 | 6 (log𝑋 log log𝑋 )−1 is larger than
5
8
𝑀 (𝛼, 𝛽)𝑁 (𝑄) (4.1)

where

𝑀 (𝛼, 𝛽) = 1
√
2𝜋

∫ 𝛽

𝛼

𝑒−𝑥
2/2𝑥𝑘𝑑𝑥. (4.2)

Proof. Choose for ℎ the explicit Féjer kernel up to the maximal Fourier support 𝐿 = 4 allowed by
the low-lying zero result given in Theorem 5, i.e.

ℎ0(𝑥) :=
(
sin𝜋𝑥
𝜋𝑥

)2
ℎ̂0(𝑦) = max(1 − |𝑦 |, 0), (4.3)

which has Fourier transform supported in (−1, 1), and ℎ(𝑥) = ℎ0(4𝑥) so that ℎ̂(𝑦) = 1
4ℎ̂0(𝑥/4) is

compactly supported in (−4, 4). Let 𝐻 =
∑

𝛾𝑓
ℎ(𝛾 𝑓 ) to lighten notations for the duration of the

proof. We get from the “moment method", i.e. Proposition 3:∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑃 (𝑓 ,𝑥)/
√
log log𝑥∈(𝛼,𝛽)

𝐻Φ

(
𝑐 (𝑓 )
𝑋

)
∼ 𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝐻Φ

(
𝑐 (𝑓 )
𝑋

)
, (4.4)
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and, by Proposition 5, we get∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝐻Φ

(
𝑐 (𝑓 )
𝑋

)
∼

∫
R
𝑊𝑂ℎ

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Φ

(
𝑐 (𝑓 )
𝑋

)
=
3
4

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Φ

(
𝑐 (𝑓 )
𝑋

)
, (4.5)

where ∫
𝑊𝑂 (𝑦)ℎ(𝑦)𝑑𝑦 =

3
4

(4.6)

by the explicit choice of ℎ, which is allowed to have Fourier support in (−4, 4). See [2] for the
proof of the optimality of this function in such a setting.

We can now use the similar amplication argument as in Radziwiłł and Soundararajan approach.
Rewrite the above sum as ∑︁

(𝛼,𝛽)
𝐻Φ =

∑︁
(𝛼,𝛽)
∃

𝐻Φ +
∑︁
(𝛼,𝛽)
�

𝐻Φ (4.7)

where we introduced the following notations, letting ℓ = (log𝑋 log log𝑋 )−1,∑︁
(𝛼,𝛽)

𝐻Φ =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝐻Φ

(
𝑐 (𝑓 )
𝑋

)
1
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽) (4.8)

∑︁
(𝛼,𝛽)
∃

𝐻Φ =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
∃ |𝛾𝑓 |6ℓ

𝐻Φ

(
𝑐 (𝑓 )
𝑋

)
1
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽) (4.9)

∑︁
(𝛼,𝛽)
�

𝐻Φ =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
� |𝛾𝑓 |6ℓ

𝐻Φ

(
𝑐 (𝑓 )
𝑋

)
1
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽) (4.10)

The weights ℎ(𝛾 𝑓 ) are always non-negative, since the function ℎ we chose is non-negative. If
𝐿(𝑠, 𝑓 ) has a zero 𝛾 𝑓 smaller than ℓ , then 𝛾 𝑓 is smaller than log log(𝑋 )−1, and its conjugate is also
a zero which has same module. Choosing a continuous function ℎ such that ℎ(0) = 1, when 𝑥

grows to innity ℎ(𝛾 𝑓 ) is larger than 1 − 𝜀. We can therefore write∑︁
(𝛼,𝛽)

𝐻Φ =
∑︁
(𝛼,𝛽)
∃

𝐻Φ +
∑︁
(𝛼,𝛽)
�

𝐻Φ > (2 − 𝜀)
∑︁
(𝛼,𝛽)
∃

Φ +
∑︁
(𝛼,𝛽)
�

𝐻Φ = (2 − 𝜀)
∑︁
(𝛼,𝛽)

Φ +
∑︁
(𝛼,𝛽)
�

(𝐻 − 2)Φ. (4.11)

On the other hand, the above consequences of the moment method and of the limiting one-level
density result given in Proposition 5 rephrase as∑︁

(𝛼,𝛽)
Φ ∼ 𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Φ (4.12)∑︁
(𝛼,𝛽)

𝐻Φ ∼ 3
4
𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Φ (4.13)

relating the restricted sums to the corresponding whole sums. We therefore deduce

(2−𝜀)𝑀 (𝛼, 𝛽)
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
Φ 6

∑︁
(𝛼,𝛽)

𝐻Φ−
∑︁
(𝛼,𝛽)
�

(𝐻−2+𝜀)Φ ∼ 𝑀 (𝛼, 𝛽) 34
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
Φ−

∑︁
(𝛼,𝛽)
�

(𝐻−2+𝜀)Φ (4.14)
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so that, since 0 6 ℎ 6 1,
5
4𝑀 (𝛼, 𝛽) 6

∑︁
(𝛼,𝛽)
�

(2 − 𝐻 − 𝜀)Φ 6 (2 − 𝜀)
∑︁
(𝛼,𝛽)
�

Φ, (4.15)

from where we can lower bound the smoothed quantity of 𝑓 ∈ 𝐻𝑘 (𝑞) having zeros of moduli
smaller than ℓ , viz. ∑︁

(𝛼,𝛽)
�

Φ

(
𝑐 (𝑓 )
𝑋

)
> ( 58 − 𝜀)𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Φ

(
𝑐 (𝑓 )
𝑋

)
, (4.16)

for all 𝜀 > 0, as wanted. �

Remark. The constant is exactly the one appearing in the theorem, and this is where we see that
the quality of the results towards the density conjecture, i.e. the width of the allowed Fourier
support, conditions the quality of this lower bound. Note that this gives the same value as the
method in [2] to obtain lower bounds for nonvanishing, as anticipated by [6].

4.2. Few zeros contributing a lot. The following proposition is the analogue of [6, Lemma 2],
and quanties how rare are the 𝑓 ∈ 𝐻𝑘 (𝑞) such that the contribution from the sum over zeros is
large.

Proposition 7. The number of 𝑓 ∈ 𝐻𝑘 (𝑞) such that∑︁
|𝛾𝑓 |>(log𝑋 log log𝑋 )¯1

log(1 + (𝛾 𝑓 log𝑥)−2) > log log log(𝑋 )3 (4.17)

is � 𝑋/log log log𝑋 .

Proof. The same proof as in [6, Lemma 2] holds mutatis mutandis. �

4.3. Conclusion. This closely follows the argument of [6], now that all the corresponding esti-
mates have been established. We write it here for the sake of completeness. Recall from Proposi-
tion 2, with 𝑥 = 𝑐 (𝑓 ), that

log𝐿(1/2, 𝑓 ) = 𝑃 (𝑓 , 𝑥) − 1
2 log log(𝑥) +𝑂

©«
∑︁
𝛾𝑓

log(1 + (𝛾 𝑓 log𝑥)−2)
ª®¬ . (4.18)

By Proposition 6, we may select 𝑓 ’s such that 𝑃 (𝑓 , 𝑥)/
√︁
log log𝑋 ∈ (𝛼, 𝛽) and that there is no

small zeros, without loosing at least a proposition of 5
8 of the whole family, i.e.∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽)

�|𝛾𝑓 |6(log𝑋 log log𝑋 )−1

1 > 5
8𝑀 (𝛼, 𝛽)𝑁 (𝑄) . (4.19)

By Proposition 7, we may remove 𝑓 ’s such that the sum over zeros larger than (log𝑋 log log𝑋 )−1
contributes more than log log log(𝑋 )3, since they are asymptotically a negligible cardinality. and
the other ones do not contribute that much.
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The proportion of 𝑓 such that 𝑃 (𝑥, 𝑓 )/
√︁
log log 𝑐 (𝑓 ) falls into (𝛼, 𝛽) is therefore asymptotically

larger than 5
8𝑀 (𝛼, 𝛽) as claimed in the theorem, henceforth ending the proof.
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