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Introduction

One can consider the upper half plane H and the group SL2(Z) which is acting on H. On
H we can also introduce a differential structure and look at the Laplacian ∆ acting on such
a space as a linear operator. The eigenvectors of ∆ are called Maass forms and there are 2
main types of Maass forms: Maass cusp forms and Eisenstein series. By defining a measure
µ on H for a Maass cusp form u we can consider the complex measure u2µ and for Eisenstein
series E we can consider the measure |E|2 µ. The first question we may ask ourselves is how
these measures behave asymptotically as their eigenvalue gets large. In the paper by Luo
and Sarnak [5] the behavior of |E|2 µ is discussed for compact Jordan measurable sets. It was
then done in the general setting by combining the work of Lindenstrauss and Soundararajan.

Here we are interested in a similar problem, we wish to consider how these measures behave
asymptotically when evaluated on a decreasing family of discs. However we shall see that we
will need some kind of link between the behavior of the radius of the disks and the eigenvalues
in order to make sure that their behavior is not too wild. We will be following the work of
Matthew P. Young in his article [8].
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1 Maass wave forms

Consider the space H = {z ∈ C | Im(z) > 0} which is known as the upper half plane. On
such a space we can consider the following metric:

m : H −→
{
f ∈ RR×R

∣∣ f is a blinear map
}

z 7−→
m(z) : R× R −→ R

(x, y) 7−→ ⟨x,y⟩
Im(z)2

One can check that this makes H a Riemannian manifold, and that more precisely that H
is a hyperbolic space. We can also show that the geodesics of H consist of vertical euclidean
lines and circles centered on the real line. On H by considering λ to be the Lebesgue measure
we can define the measure µ = 1

y2
λ⊗λ more commonly denoted as dxdy

y2
and for this measure

can define a bilinear product ⟨·, ·⟩. For more details about the geometry of H one can check
the following book [1].

For this geometry there is also a natural differential operator that one can consider:

∆ = y2
(
∂2

∂2x
+

∂2

∂2y

)
∆ is known as the Laplacian over H. On H one can also consider the action of the group
SL2(Z) given by:

· : SL2(Z)×H −→ H
(γ, z) 7−→ az+b

cz+d

This is an action that is natural for the space H in the sens that it preserves the metric. Now
we can consider functions on H with values in C that are eigenvectors of ∆, however this set
of functions is too large for us to study which is why we introduce the following definition.

Definition 1.1:

Let f ∈ C∞
c (H) we shall say that f is a Maass wave form if and only if the following

properties are verified:

1. ∀γ ∈ SL2(Z), ∀z ∈ H, f(γz) = f(z)

2. ∃λ ∈ C, −∆f = λf

3. ∃K ⩾ 0, ∃N ⩾ 0, ∀x ∈ R, ∀y ∈ [1; +∞[, |f(x+ iy)| ⩽ K |y|N

Since SL2(Z) contains the unit translation we know that every Maass form has a Fourier
expansion, and by putting this expansion in the equation −∆f = λf we obtain the following
proposition:

5



Proposition 1.2:

Let f be a Maass wave form such that −∆f =
(
1
4
+ t2

)
f then it as the following

Fourier expansion:

f(x+ iy) = cy
1
2
−it + dy

1
2
+it + y

1
2

+∞∑
n=1

anKit(2πny) cos(2πnx)

Where K is the Bessel function and c, d and an are complex numbers.

There is a particular type of Maass wave forms called Eisenstein series defined by:

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s

Where Γ∞ is the subgroup generated by the unit translation. And one may check that we
have:

−∆E(·, s) = s(1− s)E(·, s)

For a Maass form f we shall say that f is cusp form if it’s degree 0 Fourier coefficient is 0
which allows us to prove the following theorem:

Theorem 1.3:

Let f be a Maass cusp form such that:

f(x+ iy) = y
1
2

+∞∑
n=1

anKit(2πny) cos(2πnx)

Then we can define:

L(f, s) =
+∞∑
n=1

a(n)

ns

Which converges for Re(s) > 3
2
and for ε being the parity of f one can define:

Λ(f, s) = π−sΓ

(
s− ε+ it

2

)(
s− ε− it

2

)
L(f, s)

Then Λ(f, ·) can be extended to an entire function and satisfies the following equation:

Λ(f, s) = (−1)εΛ(f, 1− s)

One can also see that ∆ is a self adjoint operator on the space C∞
c (SL2(Z)\H) and by density

it can be extended to a self ajoint operator over the space L2(SL2(Z)\H) which is a Hilbert
space. Thus we would like to diagonalize this operator but unfortunately this can not be
done in a naive way. Indeed this operator is not a compact operator but if instead of just
considering a discrete Hilbert base we consider a continuous Hilbert base we can still manage
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to diagonalize it. More precisely we have the following result for more details the reader can
take a look at the following book [3]:

Theorem 1.4:

There exists a orthonormal family B of Maass cusp forms such that by denoting n the
counting measure over over B we have that:

∀f ∈ L2(SL2(Z)\H),

f =

〈
f,

(
3

π

) 1
2

〉
+

∫
B

⟨f, v⟩ vdn(v) + 1

4π

∫
R

〈
f, E(·, 1

2
+ it)

〉
E(·, 1

2
+ it)dλ(t)
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2 L-functions

In the previous section, to each Maass cusp f form we were able to associate it’s L function

defined by L(f, s) =
+∞∑
n=1

an
ns where an are the Fourier coefficients of f . And this concept is

not unique to Maass forms, it is also done for modular forms and other objects. So in this
section we shall define L-functions in a very general way so that we can obtain results that
are true for all of these settings.

2.1 Definitions

Our first task is to define what we consider an L-function to be. The idea behind this is we
want it have a Dirichlet series, a Euler product and we would like to be able to complete it
into a function which can be extended over C. We also wish this extension to have a so called
functional equation. And as in our example with Maass forms the L-function is actually a
function of two variables, the function and an element of C.

We will need functions that do not behave too badly, this is why we introduce the following
definition.

Definition 2.1:

Let f be an entire function, we shall say that:

f is of order ⩽ 1 ⇐⇒ ∀β > 1, f(|z|) ≪
|z|→+∞

exp(|z|β)

Definition 2.2:

Let f be a meromorphic function over C, we say that:

f has a Dirichlet series

⇐⇒

∃a ∈ CN\{0},


∀z ∈ C,Re(z) > 1, f(z) =

+∞∑
n=1

a(n)
nz

∀z ∈ C,Re(z) > 1,
∑
n⩾1

∣∣∣a(n)nz

∣∣∣ converges
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Definition 2.3:

Let f be a holomorphic function on the set {z ∈ C | Re(z) > 1}, p ∈ P and d ∈ N\ {0}
we say that:

f is a p-term of degree d ⇐⇒ ∃a ∈ B(0, p)J1,dK, f(z) =
d∏

n=1

1

1− a(n)p−z

And let us define Td,p =
{
f ∈ C{z∈C | Re(z)>1}

∣∣ f is a p-term of degree d
}
.

Definition 2.4:

Let f be a meromorphic function, we say that:

f has a Euler product of degree d

⇐⇒

∃T ∈
∏
p∈P

Td,p,


f |{z∈C | Re(z)>1} =

∏
p∈P

T (p)

∀z ∈ C,Re(z) > 1 ⇒
∏
p∈P

T (p)(z) converges absolutly

By using the properties of absolute converging products we have the following result.

Proposition 2.5:

Let f be a meromorphic function and let d ∈ N\ {0} such that f has a Euler product
pf degree d then:

∀z ∈ C,Re(z) > 1 ⇒ f(z) ̸= 0

In the function equation of the L-function for Maass cusp forms we have some gamma factors
that appear this is why we introduce the following definitions.
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Definition 2.6:

Let f be a meromorphic over C defined on an open set U and d ∈ N\ {0}, we say that:

f is a gamma product of degree d

⇐⇒

∃a ∈ {z ∈ C | Re(z) > −1}J1,dK ,


∀z ∈ C,Card(a−1({z})) = Card(a−1({z}))

∀z ∈ U, f(z) = π−d z
2

d∏
n=1

Γ
(

z+a(n)
2

)
Let us also notice that ∀z ∈ C,Card(a−1({z})) = Card(a−1({z})) just means that the num-
bers a(n) come in conjugate pairs.

In the next definition we introduce a set E, it should be viewed as the set of Maass cusp
forms for example.

Definition 2.7:

Let E be a set, let γ ∈ CE×(C\{0,1}) and let d ∈ N\ {0} we then define:

γ is a gamma factor of degree d ⇐⇒ ∀a ∈ E, γ(a, ·) is a gamma product of degree d

Definition 2.8:

Let E be a set, let Λ ∈ CE×(C\{0,1}), let a, b ∈ E, we say that:

Λ satisfies an (a, b)-functional equation

⇐⇒
∃η ∈ S1,∀z ∈ C\ {0, 1} ,Λ(a, z) = ηΛ(b, 1− z)

In the following definition the function for a ∈ E, ϕ(a) should be viewed as the dual object
of a. In the case of Maass forms ϕ is the identity.

Definition 2.9 (L-function) :

Let E be a set, let L ∈ CE×(C\{0,1}) and let ϕ ∈ EE. Then we say that L is an L-
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function over the set E for the dual function ϕ ⇐⇒ ∃d ∈ N\ {0}, ∃γ a gamma factor
of degree d, ∃c ∈ NE such that the following properties are true:

1. ∀a ∈ E, ∃u ∈ CN\{0}, u is a Dirichlet series for L(a, ·) and u is a Dirichlet series
for L(ϕ(a), ·).

2. ∀a ∈ E, L(a, ·) has a Euler product of degree d.

3. ∀a ∈ E, γ(a, ·) = γ(ϕ(a), ·) and c(a) = c(ϕ(a)).

4. ∀a ∈ E, c(a)
·
2γ(a, ·)L(a, ·) is holomorphic over C\ {0, 1} and meromorphic over

C or order ⩽ 1 and satisfies an (a, ϕ(a))-functional equation.

In the previous definition we can check that d, γ and c are unique thus we shall say that
(d, γ, c) are the parameters of L. The uniqueness of these parameters justify that the following
definition make sense.

Definition 2.10:

Let f be a gamma product of degree d defined on an open set U . And a ∈

{z ∈ C | Re(z) > −1}J1;dK , f(z) = π−d z
2

d∏
n=1

Γ
(

z+a(n)
2

)
. We then define the conductor

cond(f) ∈ RC by:

cond(f)(z) =
d∏

n=1

(|z + a(n)|+ 1)

Definition 2.11:

Let E be a set, let γ ∈ CE×C\{0,1} be a gamma factor of degree d we can then define:

cond(γ) : E × C −→ R
(a, z) 7−→ cond(γ(a, ·))(z)

Definition 2.12:

Let E be a set, let L ∈ CE×C\{0,1} be an L-function over the set E and let (d, γ, c) be
the parameters of L. Then we define the conductor cond(L) by:

cond(L)(a, z) = c(a) cond(γ)(a, z)
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Aside form Maass forms a nice example of L-function would be the Riemann zeta function.
Indeed one has that:

∀z ∈ C,Re(z) > 1 ⇒ ζ(z) =
+∞∑
n=1

1

nz
=
∏
p∈P

1

1− p−z

To stick with our notations, we can define a set E = {0} and L(0, z) = ζ(z). And one can
show that ζ can be completed into ξ(z) = π− z

2Γ
(
z
2

)
ζ(z) which as the functional equation

ξ(z) = ξ(1− z). Thus the conductor q associated to ζ would be q(z) = |z|+ 1.

Using this abstract definition of L-functions we are able to define operations that create new
kinds of L-functions. For example for a set E and a ∈ E we can define the symmetric square
L-functions L(sym2 a, z).

2.2 Convexity bounds

Using the associated Dirichlet series we can describe the behavior of an L-function in
{z ∈ C | Re(z) > 1} and using the functional equation given by point 3 of the previous
definition we can also describe its behavior in {z ∈ C | Re(z) < 0}. However it is useful to
know its behavior on the so called critical strip {z ∈ C | Re(z) ∈ [0; 1]} and finding the best
possible bounds is an open problem. So we will just give the so called trivial bounds given
by some basic complex analysis.

The following lemma is a direct consequence of the fact that L-functions have Dirichlet series
and that those converge absolutely.

Lemma 2.13:

Let E be a set, X ∈ P(E × C) and let L be an L-function associated to E. Then:

∀a ∈ E,∀x > 1,∃K ⩾ 0,∀y ∈ R, |L(a, x+ iy)| ⩽ K

By combining the previous lemma with the fact that L-functions have a functional equation
and using Stirling’s formula (see Appendix) we obtain the following lemma.

Lemma 2.14:

Let E be a set, let L be an L-function associated to E and let q = cond(L), then one
has:

∀a ∈ E,∀x < 0,∃K ⩾ 0,∀y ∈ R, |L(a, x+ iy)| ⩽ Kq(a, x+ iy)
1
2
−x

Now to find out what happens in the critical strip {z ∈ C | Re(z) ∈ [0; 1]} we will use the
Phragmén–Lindelöf principle. Thus we shall first take a look at some results from complex
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analysis.

Lemma 2.15 (The Phragmen Lindelöf principle) :

Let c ⩾ 0, let E =
{
z ∈ C

∣∣ Re(z) ∈
[
−π

2
; π
2

]
and Im(z) ⩾ c

}
and let f ∈ C(E) be

a holomorphic function over
◦
E such that ∀z ∈ ∂E, |f(z)| ⩽ 1 and ∃A,B > 0,∃η ∈

[0, 1[,∀z ∈ E, |f(x+ iy)| ⩽ A exp(B exp(ηy)) then:

∀z ∈ E, |f(z)| ⩽ 1

Proof :

Let ε > 0 and let δ = 1− η > 0.
We can define the following function:

g : C −→ C
z 7−→ exp

(
−ε exp

(
−i
(
1− δ

2

)
z
))

One can check that g is a holomorphic function and now we shall study the behavior of
g. To do so let z = x+ iy ∈ C and let us compute the following expression:

exp(iz) = exp(−y + ix) = exp(−y)(cos(x) + i sin(x))

Thus we have that for a ∈ R:

exp(a exp(iz)) = exp(a exp(−y)(cos(x) + i sin(x)))

= exp(a exp(−y)(cos(x)) exp(ia exp(−y) sin(x)))

And this gives us |exp(a exp(iz))| = exp(a exp(−y) cos(x)) and by applying this to g we
obtain that:

|g(z)| = exp

(
−ε exp

((
1− δ

2

)
y

)
cos

(
−
(
1− δ

2

)
x

))
And for x ∈

[
−π

2
; π
2

]
we have that cos

(
−
(
1− δ

2

)
x
)
⩾ cos

((
1− δ

2

)
π
2

)
> 0, thus be

defining K1 = cos
((
1− δ

2

)
π
2

)
we have:

|g(z)| ⩽ exp

(
−εK1 exp

((
1− δ

2

)
y

))
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And for z ∈ E by noting z = x+ iy we can compute:

|f(z)g(z)| ⩽ A exp (B exp ((1− δ) y)) exp

(
−εK1 exp

((
1− δ

2

)
y

))
= A exp

(
B exp ((1− δ) y)− εK1 exp

((
1− δ

2

)
y

))
= A exp

(
B exp

((
1− δ

2

)
y

)
exp

(
−δ
2
y

)
− εK1 exp

((
1− δ

2

)
y

))
= A exp

(
B exp

((
1− δ

2

)
y

)(
exp

(
−δ
2
y

)
− εK1

))
This show us that lim

y→+∞
|f(x+ iy)g(x+ iy)| = 0. This means that:

∃M ⩾ 0,∀z ∈ E, Im(z) ⩾M ⇒ |f(z)g(z)| ⩽ 1

And we can define F = {z ∈ E | Im(z) ⩽M}, this set being compact we can apply the
maximum modulus principal. Since we have chosenM such that ∀z ∈ ∂F , |f(z)g(z)| ⩽ 1
we have that ∀z ∈ F , |f(z)g(z)| ⩽ 1. And we also have that z ∈ E\F , |f(z)g(z)| ⩽ 1.
So this gives us:

∀z ∈ E,∀ε > 0,

∣∣∣∣f(z) exp(−ε exp(−i(1− δ

2

)
z

))∣∣∣∣
Thus for z ∈ E we have that:

lim
ε→0

∣∣∣∣f(z) exp(−ε exp(−i(1− δ

2

)
z

))∣∣∣∣ ⩽ 1

And since lim
ε→0

exp
(
−ε exp

(
−i
(
1− δ

2

)
z
))

= 1 we finally obtain that:

|f(z)| ⩽ 1

And this gives us the wanted result.

Lemma 2.16:

Let a < b, let a ⩾ 0, let E = {z ∈ C | Re(z) ∈ [a; b] and Im(z) ⩾ a} and let f ∈ C(E)
be a holomorphic function over

◦
E such that ∀z ∈ ∂E, |f(z)| ⩽ 1 and ∃A,B > 0, ∃η ∈

[0, 1[,∀z ∈ E, |f(x+ iy)| ⩽ A exp
(
B exp

(
η π
b−a

y
))

then:

∀z ∈ E, |f(z)| ⩽ 1

Using these results we are able to deduce the so called convexity bound for L-functions which
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is expressed in the following proposition.

Theorem 2.17 (Convexity bounds) :

Let E be a set, let L ∈ CE×C\{0,1} be an L-function associated to this set and let
q = cond(L). Then we have the following convexity bound:

∀ε > 0,∀a ∈ E,∀x ∈ [0, 1],∃M ⩾ 0,∃K ⩾ 0,∀y ∈ R,

|y| ⩾M ⇒ |L(a, x+ iy)| ⩽ Kq(a, x+ iy)
1−x
2

+ε

Proof :

Let ϵ > 0 and η > 0. We wish to use the previous lemma, to do so let α =
1
2
+η

1+2η
⩾ 0, let

β =
(1+η)( 1

2
+η)

1+2η
⩾ 0 and by considering Log as being a logarithm defined on C\]−∞; 0]

we define:
g : C\]−∞; 0] −→ C

z 7−→ exp(−(−αz + β) Log(−iz))
One can check that g is holormophic and now we shall take a look at the behaviour of g.
To do so consider z = x+ iy ∈ C and let us calculate:

g(x+ iy) = exp (−(−α(x+ iy) + β) Log(−iz))
= exp (−(β − αx− iαy)(ln(|z|) + i arg(−iz)))
= exp(−((β − αx) ln(|z|) + αy arg(−iz) + i((β − αx) arg(−iz)− αy ln(|z|))))

Thus we obtain that:

|g(x+ iy)| = exp(−((β − αx) ln(|z|) + αy arg(−iz)))
= exp(−(β − αx) ln(|z|)) exp(−αy arg(−iz))
= |z|−(β−αx) exp(−αy arg(−iz))

Then one can notice that arg(−iz) = arg(z) + arg(−i) = arg(z)− π
2
and for x, y ⩾ 0, we

have arg(x+ iy) = π
2
− arg(y + ix) = π

2
− tan−1

(
x
y

)
. Which leads us to:

|g(x+ iy)| = |z|−(β−αx) exp

(
αy tan−1

(
x

y

))
Now consider F = {z ∈ C | Re(z) ∈ [−η; 1 + η] and Im(z) > 0}, then one can also check
by using a Taylor expansion of tan−1 in 0 that:

∃N1 ⩾ 0,∃K1, K2 > 0, ∀z ∈ F, Im(z) ⩾ N1 ⇒ K1 ⩽ exp

(
αy tan−1

(
x

y

))
⩽ K2
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Now by knowing that q is a conductor of L we have that ∃d ∈ N\ {0}, ∃c ∈ NE, ∃γ a
gamma factor of degree d, ∀a ∈ E, ∀z ∈ C, q(a, z) = c(a) cond(γ)(a, z).

Let a ∈ E, we know that by the definition of cond(γ), ∃a ∈ {z ∈ C | Re(z) > −1}J1;dK,

∀z ∈ C, cond(γ)(a, z) =
d∏

n=1

(|z + a(n)|+ 3). Thus:

∀z ∈ C, q(a, z) = c(a)
d∏

n=1

(|z + a(n)|+ 3)

And we have that:

∃K3 ⩾ 0,∀y ∈ R, |L(a, 1 + η + it)| ⩽ K3 = K3

∃K4 ⩾ 0,∀y ∈ R, |L(a,−η + it)| ⩽ K4q(a,−η + it)
1
2
+η

We may consider the following function:

h : C\]−∞; 0] −→ C
z 7−→ L(a, z)g(z)d

Let y ⩾ N1 we then have:∣∣L(a, 1 + η + iy)g(1 + η + iy)d
∣∣ ⩽ K3K

d
2 |z|

−d(β−α(1+η))

And we have β − α(1 + η) =
(1+η)( 1

2
+η)

1+2η
−

1
2
+η

1+2η
(1 + η) = 0, which is why we obtain:∣∣L(a, 1 + η + iy)g(1 + η + iy)d

∣∣ ⩽ K3K
d
2

And on the other hand we have:∣∣L(a,−η + iy)g(−η + iy)d
∣∣ ⩽ K4q(a,−η + it)

1
2
+ηKd

2 |z|
−d(β+αη)

And we may calculate β +αη =
(1+η)( 1

2
+η)

1+2η
+

1
2
+η

1+2η
η =

( 1
2
+η)(1+2η)

1+2η
= 1

2
+ η which gives us:∣∣L(a,−η + iy)g(−η + iy)d

∣∣ ⩽ K4K
d
2q(a,−η + it)

1
2
+η |z|−d( 1

2
+η)

= K4K
d
2c(a)

d∏
n=1

(
(|z + a(n)|+ 3)

1
2
+η |z|−(

1
2
+η)
)

By noticing that lim
|y|→+∞

d∏
n=1

(
(|z + a(n)|+ 3)

1
2
+η |z|−(

1
2
+η)
)

= 1 and by defining K5 =

c(a)K4K
d
2 we have that:

∃K6 ⩾ 0,∃N2 > 0, ∀y ⩾ N2,
∣∣L(a,−η + iy)g(−η + iy)d

∣∣ ⩽ K6
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Let us defineN3 = max(N1, N2) andX = {z ∈ C | Re(z) ∈ [−η; 1 + η] and Re(z) ⩾ N3}
and since [−η+iN3; 1+η+iN3] is compact we may also define K7 = max(h([−η+iN3; 1+
η + iN3])). And by defining K8 = max(K6, K7) we have that:

∀z ∈ ∂X, |h(z)| ⩽ K8

Since L is an L-function we also know that ∃A,B ⩾ 0, ∃µ ∈ [0; 1[, ∀x + iy ∈ C,
|f(x+ iy)| ⩽ A exp(B exp(η π

1+2η
)y) thus we may apply the previous lemma to h

K8
and

get that ∀z ∈ X, |h(z)| ⩽ K8. Which gives us:

∀z = x+ iy ∈ X, |L(a, z)| ⩽ K8
1

|g(z)|d
⩽
K8

K1

|z|d(β−αx)

And this concludes the proof.

As an immediate consequence of this theorem we can deduce that ζ
(
1
2
+ iy

)
≪ |y|

1
4
+ε.

However it is conjectured that
(
1
2
+ iy

)
≪ |y|ε, and this conjecture can be generalized to

L-functions.

Conjecture 2.18 (Lindelöf ’s hypothesis) :

Let E be a set, let L be an L-function and let q = cond(L) then one has that:

∀a ∈ E,∀ε > 0,

∣∣∣∣L(a, 12 + iy

)∣∣∣∣≪ q

(
a,

1

2
+ iy

)ε

17



3 Quantum unique ergodicity

In this section for a Maass cusp form u we shall consider the measure u2µ and for an Eisenstein
series E we shall consider the measure |E|2 µ. For a hyperbolic disk D(z, r) we wish to
establish the behavior of u2µ(D(z, r)) and |E|2 µ(D(z, r)) as the eigenvalues increase and
the radius r decreases. To do so we will need some kind of link between the behavior of the
eigenvalues and the behavior in r. So we will consider a function a(t) where t is the eigenvalue
and we shall consider the radius 1

a(t)
. We will also need to approximate the function 1D(z,r)

by functions of C∞
c (H) to use results that are true for smooth functions. And replacing 1

a(t)

by ϕ leads to studying ⟨u2, ϕ⟩ and
〈
|E|2 , ϕ

〉
.

We also need the functions ϕ to have a nice behavior which is why we introduce the following
definition.

Definition 3.1:

Let ϕ ∈ C∞
c (H) and a ∈ [0; +∞[, we say that ϕ is a-regular if we have:

∀n ∈ N,∃C ∈ [0; +∞[, ∥∆nϕ∥1 ⩽ Ca2n

3.1 QUE for Maass wave forms

In this section we will first consider a Maass wave form u and try to find an asymptotic
expression for the complex measure u2µ of a hyperbolic disc. To do so we will need to
calculate an asymptotic expression of ⟨u2, ϕ⟩. So we can consider a spectral decomposition
of ∆ and then use the Plancherel formula.

Definition 3.2:

We shall that B is a spectral basis if it is a orthogonal set of Maass wave cusp forms
that satisfies the conclusion of the spectral theorem. For v ∈ B we define λ(v) such
that ∆v =

(
1
4
+ λ(v)2

)
, we also define the following sets:

• B(x) = {v ∈ B | λ(v) ⩾ x}

• A(x, y) = {v ∈ B | x ⩽ λ(v) ⩽ y}

18



Lemma 3.3:

Let B be a spectral basis, let u be a Maass cusp form and ϕ ∈ C∞
c (H). If we consider

n to be the counting measure a such B we obtain the formula:

〈
u2, ϕ

〉
=

〈
u2,

3

π

〉
⟨1, ϕ⟩+

∫
B

〈
u2, v

〉
⟨v, ϕ⟩ dn(v)

+
1

4π

∫
R

〈
u2, E

(
·, 1
2
+ it

)〉〈
E

(
·, 1
2
+ it

)
, ϕ

〉
dλ(t)

Proof :

By definition of B we have:

ϕ =

〈
ϕ,

(
3

π

) 1
2

〉
+

∫
B

⟨ϕ, v⟩ vdn(v) + 1

4π

∫
R

〈
ϕ,E

(
·, 1
2
+ it

)〉
E

(
·, 1
2
+ it

)
dλ(t)

u2 =

〈
u2,

(
3

π

) 1
2

〉
+

∫
B

〈
u2, v

〉
vdn(v) +

1

4π

∫
R

〈
u2, E

(
·, 1
2
+ it

)〉
E

(
·, 1
2
+ it

)
dλ(t)

Then by using the orthogonality of B and the Eisenstein series we obtain the Plancherel
formula: 〈

u2, ϕ
〉
=

〈
u2,

3

π

〉
⟨1, ϕ⟩+

∫
B

〈
u2, v

〉
⟨v, ϕ⟩ dn(v)

+
1

4π

∫
R

〈
u2, E(·, 1

2
+ it)

〉〈
E(·, 1

2
+ it), ϕ

〉
dλ(t)

Now we shall try to find asymptotic expression for each of the terms in the previous lemma

by starting with

∫
B

〈
u2, v

〉
⟨v, ϕ⟩ dn(v). And by looking at the eigenvalues of elements of the

basis on which we integrate we have have 3 cases: when the eigenvalues are large enough,
when they are smaller than atε where a is some constant and t the eigenvalue of u and the
last case is the rest.

When the eigenvalues are large enough we will use Stirling’s formula to show that the integral
over those eigenvectors is small. And when the eigenvalues are smaller than atε we will need
to use Lindelöf’s hypothesis to get a nice behavior. Finally we will show that the integration

19



over the rest is small because of a regularity hypothesis over ϕ. All of this will be done in
the next 3 lemmas.

Lemma 3.4:

Let B be a spectral basis. Let u be a Maass cusp form of eigenvalue 1
4
+ t2 then

∀p > 0,∃M > 0,∀C ⩾M, ∃N > 0,∃K > 0,∀t ⩾ N,∀ϕ ∈ C∞
c (H),∫

B(2t+C ln(t))

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ⩽ K ∥ϕ∥1 t
−p

Proof :

We must first get an explicit formula for |⟨u2, v⟩ ⟨v, ϕ⟩|, to do so we can start using
Watson’ s formula:

∣∣〈u2, v〉∣∣ = π

8

∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣ L
(
v, 1

2

)
L
(
v, 1

2
− 2it

)
L(sym2 u, 1)2L(sym2 v, 1)

By using Stirling’s formula (see Appendix) we have that:∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣
∼

t→+∞∣∣∣∣t− λ(v)

2

∣∣∣∣− 1
4
∣∣∣∣t+ λ(v)

2

∣∣∣∣− 1
4
∣∣∣∣λ(v)2

∣∣∣∣− 1
2

exp

(
−π
2

(∣∣∣∣t+ λ(v)

2

∣∣∣∣+ ∣∣∣∣t− λ(v)

2

∣∣∣∣− 2t

))
And if v ∈ AC we have λ(v) ⩾ 2t + C ln(t) ⩾ 2t which leads us to this simplified
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expression: ∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣
∼

t→+∞(
λ(v)

2
− t

)− 1
4
(
λ(v)

2
+ t

)− 1
4
(
λ(v)

2

)− 1
2

exp
(
−π
2
(λ(v)− 2t)

)
⩽(

λ(v)

2
− t

)− 1
4

exp
(
−π
2
(λ(v)− 2t)

)
Be using the convexity bounds of L-functions we are able to find the following estimates:

∀ε > 0, L

(
v,

1

2

)
≪ λ(v)

1
2
+ε ⩽ λ(v)

∀ε > 0, L

(
v,

1

2
− 2it

)
≪ (λ(v)2t)

1
4
+ε ⩽ λ(v)2t

∀ε > 0, L(sym2 u, 1) ⩾ t−ε ⩾ t−1

∀ε > 0, L(sym2 v, 1) ⩾ λ(v)−ε ⩾ λ(v)−1

And this gives us:

L
(
u× u× v, 1

2

)
L(sym2 u, 1)2L(sym2 v, 1)

≪ λ(v)λ(v)2t

t−2λ(v)−1
= λ(v)4t3

Using this we are able to get an upper asymptotic bound for |⟨u2, v⟩|. And for |⟨v, ϕ⟩|
we have the following bound which is proved in [6]:

|⟨v, ϕ⟩| ≪ ∥ϕ∥1
(
1

4
+ λ(v)2

) 1
4

⩽ ∥ϕ∥1
(
2λ(v)2

) 1
4 ⩽ ∥ϕ∥1 2λ(v)

2

Using this we finally get and define ψ by:

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣≪ ∥ϕ∥1 λ(v)
6t3
(
λ(v)

2
− t

)− 1
4

exp
(
−π
2
(λ(v)− 2t)

)
= ψ(λ(v))

For what follows let us define the following function:

g : B(2t+ C ln(t)) −→ [2t+ C ln(t); +∞[
v 7−→ λ(t)
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And consider the measurem = ng which counts the eigenvalues and is defined by ng(E) =

n(g−1(E)) by change of variables one has

∫
B(2t+C ln(t))

ψ(g(v))dn(v) =

∫
[2t+C ln(t);+∞[

ψ(x)dm(x).

And we may once again apply a change of variables using:

h : [2t+ C ln(t); +∞[ −→ [0; +∞[
x 7−→ x− 2t− C ln(t)

And by considering mh to be the image measure this gives us that:∫
[2t+C ln(t);+∞[

ψ(x)dm(x) =

∫
[2t+C ln(t);+∞[

ψ(h(x) + 2t+ C ln(t))dm(x)

=

∫
[0;+∞[

ψ(x+ 2t+ C ln(t))dmh(x)

Before estimating this integral we may first find an easy to compute an upper bound:

ψ(x+ 2t+ C ln(t))

= ∥ϕ∥1 (x+ 2t+ C ln(t))6t3
(
x+ 2t+ C ln(t)

2
− t

)− 1
4

exp
(
−π
2
(x+ 2t+ C ln(t)− 2t)

)
= ∥ϕ∥1 (x+ 2t+ C ln(t))6t3

(
x+ C ln(t)

2

)− 1
4

exp
(
−π
2
(x+ C ln(t))

)
⩽ ∥ϕ∥1 (x+ 2t+ C ln(t))6t3 exp

(
−π
2
(x+ C ln(t))

)
= t−

π
2
C+3 ∥ϕ∥1 (x+ 2t+ C ln(t))6 exp

(
−π
2
x
)

This gives us:∫
[0;+∞[

ψ(x+2t+C ln(t))dmh(x) ⩽ t−
π
2
C+3 ∥ϕ∥1

∫
[0;+∞[

(x+2t+C ln(t))6 exp
(
−π
2
x
)
dmh(x)
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Thus by noticing that [0;+∞[=
⋃
n∈N

[n;n+ 1[ we may compute:

∫
[0;+∞[

(x+ 2t+ C ln(t))6 exp
(
−π
2
x
)
dmh(x)

=
+∞∑
n=0

∫
[n;n+1[

(x+ 2t+ C ln(t))6 exp
(
−π
2
x
)
dmh(x)

⩽
+∞∑
n=0

∫
[n;n+1[

(n+ 1 + 2t+ C ln(t))6 exp
(
−π
2
n
)
dmh(x)

=
+∞∑
n=0

(n+ 1 + 2t+ C ln(t))6 exp
(
−π
2
n
)
mh([n;n+ 1[)

⩽
+∞∑
n=0

(n+ 1 + 2t+ C ln(t))6 exp
(
−π
2
n
)
mh([0;n+ 1])

To estimate the measure one can use Weyl’s law that states ∃K > 0,m([0, n]) ⩽ Kn2.
Thus we have that:

mh([0;n+ 1]) = m(h−1([0;n+ 1))

= m([2t+ C ln(t);n+ 1 + 2t+ C ln(t)])

⩽ m([0;n+ 1 + 2t+ C ln(t)])

⩽ K(n+ 1 + 2t+ C ln(t))2

Thus we have: ∫
[0;+∞[

(x+ 2t+ C ln(t))6 exp
(
−π
2
x
)
dmh(x)

⩽ K
+∞∑
n=0

(n+ 1 + 2t+ C ln(t))8 exp
(
−π
2
n
)

Since there is an exponential, this sum converges strongly thus we can easily find an
explicit upper bound. Indeed we have:

+∞∑
n=0

(n+ 1 + 2t+ C ln(t))8 exp
(
−π
2
n
)

=

2t+C ln(t)∑
n=0

(n+ 1 + 2t+ C ln(t))8 exp
(
−π
2
n
)

+
+∞∑

n=2t+C ln(t)

(n+ 1 + 2t+ C ln(t))8 exp
(
−π
2
n
)
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So on one hand we have:

2t+C ln(t)∑
n=0

(n+ 1 + 2t+ C ln(t))8 exp
(
−π
2
n
)

⩽
2t+C ln(t)∑

n=0

(n+ 1 + 2t+ C ln(t))8

⩽
2t+C ln(t)∑

n=0

28(1 + 2t+ C ln(t))8

= 28(1 + 2t+ C ln(t))8
2t+C ln(t)∑

n=0

1

= 28(1 + 2t+ C ln(t))8(2t+ C ln(t) + 1)

= 28(1 + 2t+ C ln(t))9

And one the other hand we have:

+∞∑
n=2t+C ln(t)

(n+ 1 + 2t+ C ln(t))8 exp
(
−π
2
n
)

⩽
+∞∑

n=2t+C ln(t)

(2(n+ 1))8 exp
(
−π
2
n
)

⩽ 28
+∞∑
n=0

(n+ 1)8 exp
(
−π
2
n
)
= 28S

Where S is a constant that is independent of t. So we have that:∫
[0;+∞[

(x+ 2t+ C ln(t))6 exp
(
−π
2
x
)
dmh(x)

⩽ 28((1 + 2t+ C ln(t))9 + S)

Which yields: ∫
B(2t+C ln(t))

ψ(g(v))dn(v) ⩽ t−
π
2
C+3 ∥ϕ∥1K28((1 + 2t+ C ln(t))9 + S)

And we obtain:∫
B(2t+C ln(t))

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ⩽ t−
π
2
C+3 ∥ϕ∥1K28((1 + 2t+ C ln(t))9 + S)

Thus by choosing C to be large enough we obtain the wanted result.
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Lemma 3.5:

Let B be a spectral basis. Let u be a Maass wave cusp form of eigenvalue 1
4
+ t2. Then:

∀p > 0,∀ε > 0,∀C > 0, ∃N > 0,∃K > 0,∀ϕ ∈ C∞
c (H),∀a > 0,

t ⩾ N and ϕ is a-regular ⇒
∫

A(atε,2t+C ln(t))

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ⩽ K ∥ϕ∥1 t
−p

Proof :

Once again we may make use of Watson’s formula (see [7]):

∣∣〈u2, v〉∣∣ = π

8

∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣ L
(
v, 1

2

)
L
(
v, 1

2
− 2it

)
L(sym2 u, 1)2L(sym2 v, 1)

And we may also use Stirling’s formula to obtain that ∃C ⩾ 0 such that:∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣
⩽

C

(
1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
t+

λ(v)

2

)− 1
4
(
λ(v)

2

)− 1
2

× exp

(
−π
2

(∣∣∣∣t+ λ(v)

2

∣∣∣∣+ ∣∣∣∣t− λ(v)

2

∣∣∣∣− 2t

))
Thus for λ(v) ⩽ t we have:(

1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
t+

λ(v)

2

)− 1
4
(
λ(v)

2

)− 1
2

× exp

(
−π
2

(∣∣∣∣t+ λ(v)

2

∣∣∣∣+ ∣∣∣∣t− λ(v)

2

∣∣∣∣− 2t

))
=(

1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
t+

λ(v)

2

)− 1
4
(
λ(v)

2

)− 1
2
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And for λ(v) > t we have:(
1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
t+

λ(v)

2

)− 1
4
(
λ(v)

2

)− 1
2

× exp

(
−π
2

(∣∣∣∣t+ λ(v)

2

∣∣∣∣+ ∣∣∣∣t− λ(v)

2

∣∣∣∣− 2t

))
=(

1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
λ(v)

2
+ t

)− 1
4
(
λ(v)

2

)− 1
2

exp
(
−π
2
(λ(v)− 2t)

)
⩽(

1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
λ(v)

2
+ t

)− 1
4
(
λ(v)

2

)− 1
2

For dealing with L functions we may use this estimate that we have established previously:

L
(
v, 1

2

)
L
(
v, 1

2
− 2it

)
L(sym2 u, 1)2L(sym2 v, 1)

≪ λ(v)λ(v)2t

t−2λ(v)−1
= λ(v)4t3

All the previous estimates will help us in dealing with |⟨u2, v⟩|. For dealing with |⟨v, ϕ⟩|
we will use the fact that ϕ is a-regular. Indeed for Maass form v ∈ B one has ∆v =
(1
4
+ λ(v)2)v, thus we have:(

1

42
+ λ(v)2

)k

⟨v, ϕ⟩ =
〈
∆kv, ϕ

〉
=
〈
v,∆kϕ

〉
Now we have: ∣∣〈v,∆kϕ

〉∣∣ ⩽ ∥v∥∞
∥∥∆kϕ

∥∥
1

⩽ ∥v∥∞Ca2k

For dealing with ∥v∥∞ we may once again use the bound ∥v∥∞ ≪
(
1
4
+ λ(v)2

) 1
4 to obtain:

|⟨v, ϕ⟩| ≪
(

1

42
+ λ(v)2

) 1
4
(

a2

1
4
+ λ(v)2

)k

And if λ(v) ⩾ atε we have
(

a2
1
4
+λ(v)2

)k
⩽ t−2εn, thus we have |⟨v, ϕ⟩| ≪ λ(v)

1
2 t−2εk. And

26



we may estimate for b ⩾ 0:∫
A(atε,b)

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v)
≪

∫
A(atε,b)

(
1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
λ(v)

2
+ t

)− 1
4
(
λ(v)

2

)− 1
2

λ(v)
1
2 t−2εkdn(v)

⩽
∫

A(atε,b)

(
1

4

)− 1
4
(
λ(v)

2
+ t

)− 1
4
(
λ(v)

2

)− 1
2

b
1
2 t−2εkdn(v)

⩽
∫

A(atε,b)

b
1
2 t−2εkdn(v) = b

1
2 t−2εkn(A(atε, b))

⩽ b
1
2 t−2εkn(A(0, b))

Thus replacing b by 2t+ C ln(t) we obtain:∫
A(atε,2t+C ln(t))

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ≪ (2t+ C ln(t))
1
2 t−2εkn(A(0, 2t+ C ln(t)))

And by Weyl’s law we also have that n(A(0, 2t+C ln(t))) ≪ (2t+C ln(t))2, which yields:∫
A(atε,2t+C ln(t))

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ≪ (2t+ C ln(t))
1
2 t−2εk(2t+ C ln(t))2

⩽ t−2εk(2t+ C ln(t))3

And by choosing k to be large enough we obtain the wanted result.

Lemma 3.6:

Let us consider that Lindelöf’s hypothesis as true. Let B be a spectral basis. Let u be

a Maass cusp form of eigenvalue 1
4
+ t2, then ∀δ > 0,∀ε > 0,∃N > 0, ∃K > 0,∀t ⩾

N,∀ϕ ∈ C∞
c (H),∀a ⩾ 0

ε < δ and a ⩽ t1−δ and ϕ is a-regular

⇒∫
A(0,atε)

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ⩽ K ∥ϕ∥2 (t
− 1

2
+ε + a

1
2 t−

1
2
+ε)
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Proof :

Let ε ∈]0; δ[.
Consider η > 0 to be such that η ⩽ ε and ε(1+η)+2η

2
⩽ ε. By Lindelöf’s hypothesis for

L-functions let us consider N,K1 > 0 to be such that:

λ(v), t ⩾ N ⇒
L
(
v, 1

2

)
L
(
v, 1

2
− 2it

)
L(sym2 u, 1)2L(sym2 v, 1)

⩽ K1λ(v)
η
2 t

η
2

In the previous estimate we were able to get rid of the symmetric square L-functions
thanks to their nice behavior, for more information the reader can see [2]. By defining

the bilinear product ⟨f, g⟩A(0,atε) =

∫
A(0,atε)

f(v)g(v)dn(v) we may use Cauchy Schwarz and

Bessel’s inequality to obtain the following upper bound:∫
A(0,atε)

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) = 〈∣∣〈u2, v〉∣∣ , |⟨v, ϕ⟩|〉
A(0,atε)

⩽

 ∫
A(0,atε)

∣∣〈u2, v〉∣∣2 dn(v)


1
2
 ∫

A(0,atε)

|⟨v, ϕ⟩|2 dn(v)


1
2

⩽

 ∫
A(0,atε)

∣∣〈u2, v〉∣∣2 dn(v)


1
2

∥ϕ∥2

All the expressions above are finite because A(0, atε) is a finite set, thus its measure is

finite. Now what we need to do is find a nice upper bound for

∫
A(0,atε)

∣∣〈u2, v〉∣∣2 dn(v). Of

course we can use once again Stirling’s formula to get ∃K2 ⩾ 0,∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣
⩽

K2

(
1

42
+

(
t− λ(v)

2

)2
)− 1

8 (
λ(v)

2
+ t

)− 1
4

(
1

42
+

(
λ(v)

2

)2
)− 1

4
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We can simplify this even more by noticing that we have that
(

λ(v)
2

+ t
)− 1

4
⩽ t−

1
4 and:

(
1

42
+

(
t− λ(v)

2

)2
)− 1

8

⩽

(
t− λ(v)

2

)− 1
4

= t−
1
4

(
1− λ(v)

2t

)− 1
4

And since we have that λ(v) ⩽ atε and that a ⩽ t1−δ we have λ(v) ⩽ t1−δ+ε. Which

implies that λ(v)
t

⩽ t1−δ+ε

2t
= t−δ+ε

2
where −δ + ε < 0. Thus we may consider that

∃K3 ⩾ 0,∀t ⩾ N,

t−
1
4

(
1− λ(v)

2t

)− 1
4

⩽ K3t
− 1

4

Which leads us to: ∣∣∣Γ( 1
2
+2it+iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+2it−iλ(v)

2

)∣∣∣ ∣∣∣Γ( 1
2
+iλ(v)

2

)∣∣∣2∣∣Γ (1+2it
2

)∣∣2 ∣∣∣Γ(1+2iλ(v)
2

)∣∣∣
⩽ K2K3t

− 1
2

(
1

42
+

(
λ(v)

2

)2
)− 1

4

And we have that for λ(v) ⩾ N :

∣∣〈u2, v〉∣∣ ⩽ π

8
K1K2K3t

− 1
2

(
1

42
+

(
λ(v)

2

)2
)− 1

4

λ(v)
η
2 t

η
2

And be defining K4 = (π
8
K1K2K3)

2 we have:

∣∣〈u2, v〉∣∣2 ⩽ K4t
−1

(
1

42
+

(
λ(v)

2

)2
)− 1

2

λ(v)ηtη

= K4t
−1+η

(
1

42
+

(
λ(v)

2

)2
)− 1

2

λ(v)η

Using this upper bound we may start by computing:

∫
A(N,atε)

∣∣〈u2, v〉∣∣2 dn(v) ⩽ K4

∫
A(N,atη)

t−1+ε

(
1

42
+

(
λ(v)

2

)2
)− 1

2

λ(v)ηdn(v)

= K4t
−1+η

∫
A(N,atε)

(
1

42
+

(
λ(v)

2

)2
)− 1

2

λ(v)ηdn(v)
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By definingM = max(N∩[N ; atε]) we can then write A(N, atε) =
M⋃

k=N

A(N, atε)∩A(k, k+

1), which will then give us:

∫
A(N,atε)

(
1

42
+

(
λ(v)

2

)2
)− 1

2

λ(v)ηdn(v)

=
M∑

k=N

∫
A(N,atε)∩A(k,k+1)

(
1

42
+

(
λ(v)

2

)2
)− 1

2

λ(v)ηdn(v)

⩽
M∑

k=N

∫
A(N,atε)∩A(k,k+1)

(
λ(v)2

4

)− 1
2

λ(v)ηdn(v)

⩽ 2
M∑

k=N

∫
A(N,atε)∩A(k,k+1)

λ(v)−1+ηdn(v)

To calculate this expression we may also use Weyl’s bound that says that for k ⩾ N we
have ∃K5 > 0, n(A(k, k + 1)) ⩽ K4k.

M∑
k=N

∫
A(N,atε)∩A(k,k+1)

λ(v)−1+ηdn(v) ⩽
M∑

k=N

∫
A(N,atε)∩A(k,k+1)

k−1+ηdn(v)

=
M∑

k=N

k−1+ηn(A(N, atε) ∩ A(k, k + 1))

⩽
M∑

k=N

k−1+ηn(A(k, k + 1))

⩽
M∑
k=1

k−1+ηK5k

And we have that:

N∑
k=1

k−1+ηK5k = K5

N∑
k=1

kη ⩽ K4

N∑
k=1

Nη

⩽ K5N
η

N∑
k=1

1 = K4N
ηN

= K5N
η+1 ⩽ K5(at

ε)η+1

= K5a
1+ηtε(1+η)
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So we finally obtain that:∫
A(N,atε)

∣∣〈u2, v〉∣∣2 dn(v) ⩽ 2K4K5t
−1+ηa1+ηtε(1+η)

= 2K4K5t
−1+ε(1+η)+ηa1+η

And we have that a ⩽ t1−δ ⩽ t⇒ aη ⩽ tη which leads us to:∫
A(N,atε)

∣∣〈u2, v〉∣∣2 dn(v) ⩽ 2K4K5t
−1+ε(1+η)+2ηa

On the other hand if λ(v) < N we have a finite number of such values thus we are able
to handle the behavior of L-functions for small values and we have that there is K6 ⩾ 0
such that: ∣∣〈u2, v〉∣∣2 ⩽ K6t

−1+η

(
1

42
+

(
λ(v)

2

)2
)− 1

2

Thus: ∫
A(0,N)

∣∣〈u2, v〉∣∣2 dn(v) ⩽ ∫
A(0,N)

K6t
−1+η

(
1

42
+

(
λ(v)

2

)2
)− 1

2

dn(v)

= K6t
−1+η

∫
A(0,N)

(
1

42
+

(
λ(v)

2

)2
)− 1

2

dn(v)

And by defining K7 =

∫
A(0,N)

(
1

42
+

(
λ(v)

2

)2
)− 1

2

dn(v) we have that:

∫
A(0,N)

∣∣〈u2, v〉∣∣2 dn(v) ⩽ K6K7t
−1+η

Thus by defining K8 = max(2K4K5, K6K7) we have:∫
A(0,atε)

∣∣〈u2, v〉∣∣2 dn(v) ⩽ K8t
−1+η +K8at

−1+ε(1+η)+2η

We then obtain:∫
A(0,atε)

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ⩽ ∥ϕ∥2 (K8t
−1 +K8at

−1+ε(1+η)+2η)
1
2

= K
1
2
8 ∥ϕ∥2 (t

−1+η + at−1+ε(1+η)+2η)
1
2
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To conclude one can notice that for a, b ∈ [0; +∞[ we have that (a2 + b2)
1
2 ⩽ a + b thus

for c, d ∈ [0; +∞[ we have that (c+ d)
1
2 ⩽ c

1
2 + d

1
2 which leads to:∫

A(0,atε)

∣∣〈u2, v〉 ⟨v, ϕ⟩∣∣ dn(v) ⩽ K
1
2
8 ∥ϕ∥2 (t

−1+η + at−1+ε(1+η)+2η)
1
2

⩽ K
1
2
8 ∥ϕ∥2 (t

− 1
2
+ η

2 + a
1
2 t−

1
2
+

ε(1+η)+2η
2 )

⩽ K
1
2
+ η

2
8 ∥ϕ∥2 (t

− 1
2
+ε + a

1
2 t−

1
2
+ε)

Now let us take a look at the contribution of

∫
R

〈
u2, E(·, 1

2
+ il)

〉〈
E(·, 1

2
+ il), ϕ

〉
dλ(l).

We shall deal with this term in the same kind way, by separating this integral over 3 parts.
However to do we need the following result which be used in the same way as we used
Watson’s formula.

Lemma 3.7:

Let u be a Maass form of eigenvalue 1
4
+ t2 and let us define Z(u, s) = ζ(s)

ζ(2s)
L(sym2 u, s)

then we have that:

〈
u2, E(·, s)

〉
=
π−s

8

Γ
(
s+2it

2

)
Γ
(
s
2

)2
Γ
(
s−2it

2

)
Γ (s)

Z(s, u)

Proof :

Recall that E(z, s) =
∑

γ∈Γ∞\Γ
Im(γz)s thus we may use the unfolding technique to obtain
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what follows:〈
u2, E(·, s)

〉
=

∫
F

u2(z)E(z, s)dµ(z) =

∫
F

u2(z)
∑

γ∈Γ∞\Γ

Im(γz)sdµ(z)

=
∑

γ∈Γ∞\Γ

∫
F

u2(z)Im(γz)sdµ(z)

=
∑

γ∈Γ∞\Γ

∫
γF

u2(z)Im(z)sdµ(z)

=

∫
Γ∞\H

u2(z)Im(z)sdµ(z)

=

∫
[0,1]×[0;+∞[

u2(x, y)ysd

(
λ2

y2

)
(x, y)

=

∫
[0,1]×[0;+∞[

u2(x, y)ys−2dλ2(x, y)

Now once can remember that since u is a Maass cusp form of eigenvalue 1
4
+ t2 we can

use it’s Fourrier expansion:

u(x+ iy) = y
1
2

+∞∑
n=1

anKit(2πny) cos(2πnx)

Thus we have:

u2(x+ iy) = y
+∞∑
n=1

+∞∑
m=1

anam Kit(2πny)Kit(2πmy) cos(2πnx) cos(2πmx)

Using this expression we can compute the previous integral:〈
u2, E(·, s)

〉
=

∫
[0,1]×[0;+∞[

u2(x, y)ys−2dλ2(x, y)

=

∫
[0,1]×[0;+∞[

y

(
+∞∑
n=1

+∞∑
m=1

anam Kit(2πny)Kit(2πmy) cos(2πnx) cos(2πmx)

)
ys−2dλ2(x, y)

=

∫
[0;+∞[

+∞∑
n=1

+∞∑
m=1

anam Kit(2πny)Kit(2πmy)

∫
[0,1]

cos(2πnx) cos(2πmx)dλ(x)

 ys−1dλ(y)
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One can also notice that by a simple calculation we have:∫
[0,1]

cos(2πnx) cos(2πmx)dλ(x) =

{
1 if n = m
0 otherwise

This leads us to the following computation:〈
u2, E(·, s)

〉
=

∫
[0;+∞[

+∞∑
n=1

+∞∑
m=1

anam Kit(2πny)Kit(2πmy)

∫
[0,1]

cos(2πnx) cos(2πmx)dλ(x)

 ys−1dλ(y)

=

∫
[0;+∞[

+∞∑
n=1

a2nKit(2πny)
2ys−1dλ(y)

=
+∞∑
n=1

a2n

∫
[0;+∞[

Kit(2πny)
2ys−1dλ(y)

And we also have that:∫
[0;+∞[

Kit(2πny)
2ys−1dλ(y) =

π−s

8

1

ns

Γ
(
s+2it

2

)
Γ
(
s
2

)2
Γ
(
s−2it

2

)
Γ (s)

So by defining Z(s, u) by the following expression:

Z(s, u) =
+∞∑
n=1

a2n =
ζ(s)

ζ(2s)
L(sym2 u, s)

We are able to continue the calculations to find an explicit formula:

〈
u2, E(·, s)

〉
=

+∞∑
n=1

a2n

∫
[0;+∞[

Kit(2πny)
2ys−1dλ(y)

=
+∞∑
n=1

a2n
π−s

8

1

ns

Γ
(
s+2it

2

)
Γ
(
s
2

)2
Γ
(
s−2it

2

)
Γ (s)

=
π−s

8

Γ
(
s+2it

2

)
Γ
(
s
2

)2
Γ
(
s−2it

2

)
Γ (s)

+∞∑
n=1

a2n
ns

=
π−s

8

Γ
(
s+2it

2

)
Γ
(
s
2

)2
Γ
(
s−2it

2

)
Γ (s)

Z(s, u)

And this concludes the proof.
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Lemma 3.8:

Let u be a Maass form of eigenvalue 1
4
+ t2 then we have that:

∃K ⩾ 0, ∀t ⩾ 0,∀l ∈ R,∣∣∣∣∣π−s

8

Γ
(
s+2it

2

)
Γ
(
s
2

)2
Γ
(
s−2it

2

)
Γ (s)

∣∣∣∣∣
⩽

Kt−
1
4 (1 + (2t− l)2)−

1
8 (1 + l2)−

1
4 exp

(
−π
2

(∣∣∣∣t− l

2

∣∣∣∣+ ∣∣∣∣t+ l

2

∣∣∣∣))

Lemma 3.9:

Let u be a Maass cusp form of eigenvalue 1
4
+ t2 then we have that:

∀p ⩾ 0,∃c ⩾ 0,∃K ⩾ 0,∃N ⩾ 0,∀t ⩾ N,∫
[2t+c ln(t);+∞[

∣∣∣∣〈u2, E(·, 12 + il)

〉〈
E(·, 1

2
+ il), ϕ

〉∣∣∣∣ dλ(l) ⩽ K ∥ϕ∥1 t
−p

Lemma 3.10:

Let u be a Maass cusp form of eigenvalue 1
4
+ t2 then:

∀p ⩾ 0,∀ε > 0,∀C ⩾ 0,∃K, ∃N ⩾ 0,⩾ 0, ∀a ⩾ 0, ∀ϕ ∈ C∞
c (H),

t ⩾ N and ϕ is a-regular

⇒∫
[atε;2t+c ln(t)]

∣∣∣∣〈u2, E(·, 12 + il)

〉〈
E(·, 1

2
+ il), ϕ

〉∣∣∣∣ dλ(l) ⩽ Kt−p
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Lemma 3.11:

Let u be a Maass cusp form of eigenvalue 1
4
+ t2 then:

∀ε > 0,∃K ⩾ 0,∫
[0;atε]

∣∣∣∣〈u2, E(·, 12 + il)

〉〈
E(·, 1

2
+ il), ϕ

〉∣∣∣∣ dλ(l) ⩽ K exp
(
−π
2
t
)

By using all the previous lemmas one can easily deduce the following proposition which is
one of the most important results of this section.

Proposition 3.12:

Let u be a Maass cusp form of eigen value 1
4
+ t2 then we have that:

∀p > 0,∀δ > 0, ∀ε ∈]0; δ[,∃K ⩾ 0,∃N ⩾ 0,∀ϕ ∈ C∞
c (H),∀a ⩾ 0,

t ⩾ N and a ⩽ t1−δ and ϕ is a-regular

⇒∣∣∣∣〈u2, ϕ〉−〈u2, 3π
〉
⟨1, ϕ⟩

∣∣∣∣ ⩽ K
(
∥ϕ∥2 t

− 1
2
+ε
(
1 + a

1
2

)
+ ∥ϕ∥1 t

−p
)

Using the previous proposition we are ready to prove unique quantum ergodicity for a shrink-
ing set of discs. But before doing so we need the following technical lemma that expresses
that we can use functions ϕ ∈ C∞

c (H) obtain a similar proposition for the characteristic
function of a disc.

Corollary 3.13:

Let u be a Maass cusp form of eigen value 1
4
+ t2 then we have that:

∀p > 0,∀δ > 0,∀ε ∈]0; δ[, ∃K ⩾ 0,∃N ⩾ 0,∀z ∈ H,∀r > 0,∀a ⩾ 0,

t ⩾ N and a ⩽ t1−δ

⇒∣∣∣∣〈u2,1D(z,r)

〉
−
〈
u2,

3

π

〉〈
1,1D(z,r)

〉∣∣∣∣ ⩽ K
(
µ(D(z, r))

1
2 t−

1
2
+ε
(
1 + a

1
2

)
+ µ(D(z, r))t−p

)
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Proof :

Let z ∈ H, let r > 0, let ε > 0 and let M = sup
z∈D(z,r)

|u(z)|2.

Let η > 0.
Consider ϕ ∈ C∞

c (H) such that ∀w ∈ D(z, r), ϕ(w) = 1 and such that µ(supp(ϕ)\D(z, r)) <
η and such that ϕ is a-regular. Then we have that:∣∣∣∣〈u2,1D(z,r)

〉
−
〈
u2,

3

π

〉〈
1,1D(z,r)

〉∣∣∣∣
⩽
∣∣〈u2,1D(z,r)

〉
−
〈
u2, ϕ

〉∣∣+ ∣∣∣∣〈u2, ϕ〉−〈u2, 3π
〉
⟨1, ϕ⟩

∣∣∣∣
+

∣∣∣∣〈u2, 3π
〉
⟨1, ϕ⟩ −

〈
u2,

3

π

〉〈
1,1D(z,r)

〉∣∣∣∣
=
∣∣〈u2,1D(z,r) − ϕ

〉∣∣+ ∣∣∣∣〈u2, ϕ〉−〈u2, 3π
〉
⟨1, ϕ⟩

∣∣∣∣+ ∣∣∣∣〈u2, 3π
〉〈

1, ϕ− 1D(z,r)

〉∣∣∣∣
Let us start by showing that the first and last terms are small. To do so we can notice
that: ∥∥1D(z,r) − ϕ

∥∥
1
=

∫
H

∣∣1D(z,r)(z)− ϕ(z)
∣∣ dµ(z)

=

∫
H

1supp(ϕ)\D(z,r)(z) |ϕ(z)| dµ(z)

⩽
∫
H

1supp(ϕ)\D(z,r)(z)dµ(z)

= µ(supp(ϕ)\D(z, r)) < η

Thus we can calculate:

∣∣〈u2,1D(z,r) − ϕ
〉∣∣ =

∣∣∣∣∣∣
∫
H

u(z)2
(
1D(z,r)(z)− ϕ(z)

)
dµ(z)

∣∣∣∣∣∣
⩽
∫
H

|u(z)|2
∣∣1D(z,r)(z)− ϕ(z)

∣∣ dµ(z)
⩽M

∫
H

∣∣1D(z,r)(z)− ϕ(z)
∣∣ dµ(z)

=M
∥∥1D(z,r) − ϕ

∥∥
1
< Mη

And similarly we have that:∣∣∣∣〈u2, 3π
〉〈

1, ϕ− 1D(z,r)

〉∣∣∣∣ < ∣∣∣∣〈u2, 3π
〉∣∣∣∣ η
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And we can also use the previous lemma to have that:∣∣∣∣〈u2, ϕ〉−〈u2, 3π
〉
⟨1, ϕ⟩

∣∣∣∣ ⩽ K
(
∥ϕ∥2 t

− 1
2
+ε
(
1 + a

1
2

)
+ ∥ϕ∥1 t

−p
)

Then we can apply the triangle inequalities to have ∥ϕ∥1 ⩽
∥∥ϕ− 1D(z,r)

∥∥
1
+
∥∥1D(z,r)

∥∥
1
<∥∥1D(z,r)

∥∥
1
+ η. As well as

∥∥ϕ− 1D(z,r)

∥∥
2
+
∥∥1D(z,r)

∥∥
2
<
∥∥1D(z,r)

∥∥
2
+ η

1
2 . So we have that:∣∣∣∣〈u2, ϕ〉−〈u2, 3π

〉
⟨1, ϕ⟩

∣∣∣∣
⩽ K

(∥∥1D(z,r)

∥∥
2
t−

1
2
+ε
(
1 + a

1
2

)
+
∥∥1D(z,r)

∥∥
1
t−p
)

+K
(
η

1
2 t−

1
2
+ε
(
1 + a

1
2

)
+ ηt−p

)
Now by putting all of the pieces together we get:∣∣∣∣〈u2,1D(z,r)

〉
−
〈
u2,

3

π

〉〈
1,1D(z,r)

〉∣∣∣∣
⩽ K

(∥∥1D(z,r)

∥∥
2
t−

1
2
+ε
(
1 + a

1
2

)
+
∥∥1D(z,r)

∥∥
1
t−p
)

+K
(
η

1
2 t−

1
2
+ε
(
1 + a

1
2

)
+ ηt−p

)
+Mη +

∣∣∣∣〈u2, 3π
〉∣∣∣∣ η

Since this is true ∀η > 0 we can take the limit of η approaching 0 to obtain:∣∣∣∣〈u2,1D(z,r)

〉
−
〈
u2,

3

π

〉〈
1,1D(z,r)

〉∣∣∣∣ ⩽ K
(∥∥1D(z,r)

∥∥
2
t−

1
2
+ε
(
1 + a

1
2

)
+
∥∥1D(z,r)

∥∥
1
t−p
)

This concludes the proof.

Theorem 3.14 (QUE for Maass forms) :

Let us define the set of Maass cusp forms A =
{
u ∈ CH

∣∣ u is a Maass cusp form
}

and B =
{
t ∈ R

∣∣ ∃u ∈ A,−∆u =
(
1
4
+ t2

)
u
}
. Let δ > 0 and let a ∈]0; +∞[B such

that lim
t→+∞

a(t) = +∞ and ∀t ∈ B, a(t) ⩽ t
1
3
−δ. Let f ∈ AB such that ∀t ∈ A,

−∆f(t) =
(
1
4
+ t2

)
f(t) and

〈
f(t)2, 3

π

〉
= 1 then we have that:

(
f(t)2µ

)(
D

(
z,

1

a(t)

))
∼

t→∞
µ

(
D

(
z,

1

a(t)

))
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Proof :

Let δ > 0 then by the previous corollary we have:

∃K1 ⩾ 0,∃N1 ⩾ 0,∀z ∈ H,∀r > 0,∀b ⩾ 0,

t ⩾ N1 and b ⩽ t1−δ

⇒∣∣∣∣〈u2,1D(z,r)

〉
−
〈
u2,

3

π

〉〈
1,1D(z,r)

〉∣∣∣∣ ⩽ K1

(
µ(D(z, r))

1
2 t−

1
2
+ δ

2

(
1 + b

1
2

)
+ µ(D(z, r))t−1

)
And since we have that lim

t→+∞
a(t) = +∞ we have that lim

t→+∞
1

a(t)
= 0 thus we may use the

surface area formula for the hyperbolic disc to obtain that:

∃N2 ⩾ 0,∃K2, K3 ⩾ 0,∀t ⩾ N2, K3a(t)
−2 ⩽ µ

(
D

(
z,

1

a(t)

))
⩽ K2a(t)

−2

And we may consider N3 = max(N1, N2) and for t ⩾ N3 we have that:∣∣∣〈f(t)2,1D(z, 1
a(t))

〉
−
〈
1,1D(z, 1

a(t))

〉∣∣∣
⩽ K1

(
µ

(
D

(
z,

1

a(t)

)) 1
2

t−
1
2
+ δ

2

(
1 + a(t)

1
2

)
+ µ

(
D

(
z,

1

a(t)

))
t−1

)
⩽ K1

(
K

1
2
2 a(t)

−1t−
1
2
+ δ

2

(
1 + a(t)

1
2

)
+K2a(t)

−2t−1
)

= K1

(
K

1
2
2 a(t)

−1t−
1
2
+ δ

2 +K
1
2
2 a(t)

−1t−
1
2
+ δ

2a(t)
1
2 +K2a(t)

−2t−1
)

And we have that:〈
f(t)2,1D(z, 1

a(t))

〉
=
〈
1,1D(z, 1

a(t))

〉
+
〈
f(t)2,1D(z, 1

a(t))

〉
−
〈
1,1D(z, 1

a(t))

〉
=
〈
1,1D(z, 1

a(t))

〉1 +

〈
f(t)2,1D(z, 1

a(t))

〉
−
〈
1,1D(z, 1

a(t))

〉
〈
1,1D(z, 1

a(t))

〉
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By our previous calculations we have that for t ⩾ N3:∣∣∣∣∣∣∣
〈
f(t)2,1D(z, 1

a(t))

〉
−
〈
1,1D(z, 1

a(t))

〉
〈
1,1D(z, 1

a(t))

〉
∣∣∣∣∣∣∣

⩽ K1

(
K

1
2
2 a(t)

−1t−
1
2
+ δ

2 +K
1
2
2 a(t)

−1t−
1
2
+ δ

2a(t)
1
2 +K2a(t)

−2t−1
)

〈
1,1D(z, 1

a(t))

〉
⩽
K1

K3

a(t)2
(
K

1
2
2 a(t)

−1t−
1
2
+ δ

2 +K
1
2
2 a(t)

− 1
2 t−

1
2
+ δ

2 +K2a(t)
−2t−1

)
=⩽

K1

K3

(
K

1
2
2 a(t)t

− 1
2
+ δ

2 +K
1
2
2 a(t)

3
2 t−

1
2
+ δ

2 +K2t
−1
)

And since ∀t ∈ B, a(t) ⩽ t
1
3
−δ we have that:

K
1
2
2 a(t)t

− 1
2
+ δ

2 +K
1
2
2 a(t)

3
2 t−

1
2
+ δ

2a(t)
1
2 ⩽ K

1
2
2 t

1
3
−δt−

1
2
+ δ

2 +K
1
2
2

(
t
1
3
−δ
) 3

2
t−

1
2
+ δ

2

= K
1
2
2 t

− 1
6
− δ

2 +K
1
2
2 t

1
2
− 3

2
δt−

1
2
+ δ

2

= K
1
2
2 t

− 1
6
− δ

2 +K
1
2
2 t

−δ

Thus this proves that:

lim
t→+∞

〈
f(t)2,1D(z, 1

a(t))

〉
−
〈
1,1D(z, 1

a(t))

〉
〈
1,1D(z, 1

a(t))

〉 = 0

And this fact gives us the wanted result:〈
f(t)2,1D(z, 1

a(t))

〉
∼

t→+∞

〈
1,1D(z, 1

a(t))

〉

3.2 QUE for Eisenstein series

In this section we shall have a heuristic approach for showing quantum unique ergodicity for
Eisenstein series.

We wish to apply the technique of the previous section to the measure
∣∣E (·, 1

2
+ it

)∣∣2 µ
however we cannot apply Parceval’s formula because

∣∣E (·, 1
2
+ it

)∣∣2 grows too fast. To be able
to manage this problem be can introduced regularized integrals which consists of substracting
problematic terms, for more information one can see [9]. And this yields a regularized version
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of the Parseval’s formula.

Theorem 3.15:

Let F be a family of functions of compact support contained in a fixed set and let
a(t) ≪ t1−δ. Let us also suppose that there is a sequence of numbers c such that every
ϕ ∈ F satisfies

∥∥∆kϕ
∥∥ ⩽ c(k)a2k for any k. Then we have that for any p ⩾ 0:〈∣∣∣∣E (·, 12 + it

)∣∣∣∣2 , ϕ
〉

= ln

(
1

4
+ t2

)〈
ϕ,

3

π

〉
+O

(
a

1
2 ∥ϕ∥2 t

− 1
6
+ε
)
+O

(
ln(t)

ln(ln(t))
∥ϕ∥1

)
+O(t−p)

The constants only depend on ε and the sequence c.

We may use the same kind of arguments as in the section 4.1 to obtain the following theorem
which states that we have the quantum unique ergodicity for Eisenstein series.

Theorem 3.16 (QUE for Eisenstein series) :

Let δ > 0 and let a be a function from R to ]0;+∞[ such that lim
t→+∞

a(t) = +∞ and

∀t ∈ B, a(t) ⩽ t
1
3
−δ. Then we have that:(∣∣∣∣E (·, 12 + it

)∣∣∣∣2 µ
)(

D

(
z,

1

a(t)

))
∼

t→∞
ln

(
1

4
+ t2

)
µ

(
D

(
z,

1

a(t)

))
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Appendix: The gamma function

Definition 3.17:

We can then define the gamma function as follows:

Γ : {z ∈ C | Re(z) > 0} −→ C

z 7−→
+∞∫
0

exp(−t)tz−1dt

Theorem 3.18 (Stirling’s formula) :

Let us consider f(z) =

+∞∫
0

x− ⌊x⌋ − (x− ⌊x⌋)2

2(z + x)2
dx which converges uniformly in every

compact subset of C\]−∞; 0]. Then what has that:

∀z ∈ C\]−∞; 0], γ(z) = (2π)
1
2 zz−

1
2 exp(−z) exp(f(z))

This formula has many corollaries but in this document we shall only use the 2 following
results.

Corollary 3.19:

Let x ∈ R then we have that:

Γ(x+ iy) ∼
|y|→+∞

(2π)
1
2 |y|

1
2
−x exp

(
−π
2
|y|
)

Corollary 3.20:

For the Γ function we have, ∀x ∈]0; +∞[,∃m,M > 0, ∀y ∈ R,

m
(
x2 + y2

) 1
2(x−

1
2) exp

(
−π
2
|y|
)
⩽ |Γ(x+ iy)| ⩽M

(
x2 + y2

) 1
2(x−

1
2) exp

(
−π
2
|y|
)
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Proof :

This result comes from the fact that |Γ(x+iy)|

(x2+y2)
1
2(x− 1

2) exp(−π
2
|y|)

is continuous for a fixed x

and is converging to 1 as |y| gets large. And since Γ has no zeros this function has no
zeros as well which explains the lower bound.
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4 Conclusion

We were able to prove the quantum unique conjecture for decreasing hyperbolic discs using
analytical tools such as L-functions. However we supposed that Lindelöf’s hypothesis is true
which is still unproved and it seems that this hypothesis is necessary for our theorems to be
true.

Thanks to this project I was able to learn a lot about analytical number theory. Many
concepts were new to me such as Maass forms and general L-functions. To be honest there
are still many things that I do not fully understand but at least I was able to see how these
objects can be used and why it is interesting to study them.
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