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Abstract

The aim of this article is to give a generalization of a result by Chandrasekha-
ran and Narasimhan. The Perron Formula reformulates us the sum of the co-
efficients of a Dirichlet series as an integral. This integral can then be shifted
to capture poles, and then shifted again by a functional equation. We shall see
which estimate we can give for this integral, and how does it apply to the case of
L-functions.
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1 Introduction

1.1 Motivation

Given a sequence (a,)neN, wWe can consider the associated power series Zn>0 anz"™. This
series, which converges inside a certain disk (eventually {0}), defines an holomorphic function.
Conversely, every holomorphic function can locally be written as a power series. If Zn20 anz"™
and 2790 bn2z™ are two power series, then their product is given by

chz”, where ¢, = Z arby. (1)

n=>0 k+l=n

The relation defining ¢, is a convolution product, that could be described as additive since
the sum runs over the couples (k,[) satisfying k + 1 = n.
Now we give an example of the multiplicative version of this convolution product.

Example 1. Let A be the Von Mangoldt function:

[ log(p) ifn=p* for some o € N*
A(n) = { 0 otherwise '

A satisfies

Z A(d) = log(n) , for alln > 1.
dl=n

This sum is different than the sum defining ¢, in (1). The corresponding generating function

n>1 AT(L?). We can show that

is given by considering the Dirichlet series F(s) =)

F(s) = _CC/((;S))’ for R(s) > 1.

We have built a bridge between an arithmetical object and an analytic one. Problems
associated to A can now be translated into analytic problems. For instance, it can be shown
that the prime number theorem is equivalent to

> A(n) ~ .
n<x
We will see that the Perron formula enable us to write this sum as the following integral:

ct+ico 1 w
Z A(n) = 1/ ¢(w) zwdw, (2)

n<z a 2im —100 C(w)w

for ¢ > 1. We can then give an estimate for this integral by using estimations of the ¢ function.
We can start by, instead of integrating over the whole vertical line, integrate over a segment
and estimate the rest.

/c+ioo (’(w) Sy — /c+z'T C/(w) O TR

_ise C(w)w _ir Cw)w
for some T' > 0 that we might choose depending on x. The new integral can be evaluated by
closing the line of integration to capture the pole at s = 1 of the integrand.




c+iT 41
/ Clw) 2¥dw =z + R/,
c—iT C(’U))U}

because z is the residue of the integrand at s = 1. In [Mur08], the error term R+ R’ is shown
to be a o(x). This is the idea of the proof of the prime number theorem.

However, the error term obtained using this method is not optimal. It is not easy to see
because the prime number theorem is not a trivial result. We can follow the same idea to
evaluate the trivial sum ) _ 1. We will see that the error term we obtain in this case is
@ (3;3/ 4+€), which is a little disappointing. This will motivate us to find a new way to evaluate
the integral in the Perron formula.

1.2 Properties of Dirichlet series

Power series and Dirichlet series have similar propreties, so we shall first give the results for
power series without proving them, then we will give the equivalent results for Dirichlet series.

Definition 1.1 (Power Series). If (a,)nen is any sequence of complex numbers, we define the
formal associated power series by

Zn>0 anz™.

Definition 1.2 (Dirichlet Series). If (ay)nen is any sequence of complex numbers, we define
the formal associated Dirichlet series by

Y ns0ann %
And we shall define both series as functions once we establish some convergence theorem.

Proposition 1. Let f(2) = )., ganz" be a power series. There exist a radius R > 0 such
that f(z) converges for all z such that |z| < R and for no z such that |z| > R. This radius R
1s called radius of convergence.

Proposition 2. Let f(s) = Y_,.qann~* be a Dirichlet series. There exist an abscissa o € R
such that f(s) converges for all s such that R(s) > o. and for no s such that R(s) < o.. This
abscissa o, is called abscissa of convergence.

Remark. This abscissa of convergence might be equal to —oo, in which case the Dirichlet
series converges for all s € C. Furthermore, the abscissa of convergence might be equal to
400, in which case the Dirichlet series converges for no s € C.

Since we will often need to consider the real and the imaginary part of some complex
number s, we shall use the following notation from now on: s = ¢ + it and s. = o + it..



Proof. (Proposition 2) If there is no s such that f(s) converges, then there is nothing to prove.
Hence, we can suppose the existence of sy € C such that f(sg) converges.

Let R(k) = >_,,-, ann~ " be the rest of the series for every integer k, and consider two integer
N, M and s € C such that R(s) > R(sg) . We can then apply the Abel transform

N N
Y amn= Y (Rn—1)—R(n)n®""
n=M+1 n=M+1
N N
= Z R(n —1)n%~° — Z R(n)n®°~*
n=M+1 n=M+1

N—-1
= R(M)(M +1)*° — RIN)N*=* + 3" R(n)((n +1)*~* — n"~%)

n=M+1
N-1 il
= RODOL + 17 = RN+ 3 Ra)(so =) [ 97 lae
n=M+1 n
N
= R(M)(M +1)%7° — R(N)N®*0~% 4 (59 — S)/ R(t)tso_s_ldt.
M+1
Let € > 0. We can choose M so that R(k) < e for all k > M:
al N
Z ann_s < 2e + ’80 _ S|€/ t%(so—s—l)dt (3)
n=M+1 M+1
< 2e+ ’50 — S|6/ t%(SO_S—l)dt (4)
M+1
<2 ¢R(s0=s) :
S 2t lso—sle\jro = (5)
M+1
(M + 1)8‘1‘:(3075)
<2 — sle(0 — —7~—— 6
€+ [so — sle( g (6)
|so — sle
<2+ o — - 7
o %(8 - 80) ( )

So the Dirichlet Series converge for all s such that R(s) > R(so).
If we now consider the infimum of the real parts of those sg, and note it o., we have shown
that the Dirichlet series converge for all ¢ > o, and for no o < g.. [

Definition 1.3. For a Dirichlet series f(s) = >, -, ann™* with abscissa of convergence o,
we can also consider the abscissa of convergence of the series » -, |an|n™°. This is called the
abscissa of absolute convergence of f.

Remark. If a,, is positive for all n, then o, = g, by definition, but in general this might not
be true. However, we always have o, > o.

Example 2. The Zeta function Zn>1 1/n® has abscissa of convergence 1, by the Riemann
criterion. Its abscissa of absolute convergence is also 1. Now we will take a look at an example
where o # 04. Consider Y, —,(=1)"/n®. Once again, we have in this case o, = 1. However,
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because the sequence (—1)"n~° is alterning, the series converges as soon as o > 0. Hence
0. = 0. This is actually the case were o. and o, are as far as possible, because we always
have o4 < o+ 1. [MV12]

The general term of a Dirichlet series is holomorphic in s. When we are on the half
plane o > o4, the sum converges uniformly on compacts, so that the Dirichlet series is also
holomorphic. We will see that this is still true if we only suppose to be on the half plane
o> o

Proposition 3. If R is the radius of convergence of the power series f(z) = > - an2", then
f(2) is holomorphic in the open disc {z € C||z| < R}.

Proposition 4. If 0. is the abscissa of conergence of the Dirichlet series f(s) =Y, 5o ann®,
then f(s) is holomorphic in the open half plane {s € C}Re(s) > 0.}

Proof. Let E = {s € C|R(s) > oc} and for all K > 1 we denote Ex = {s € C|R(s) >
Ocy |8 — 8c] < K(o—o0¢)}.
Note that we have:
E=|JEx. (8)
K>1
We will show that the Dirichlet Serie converge uniformly in every Ex. We will continue
from (7),

N
Z anpn”® <26+W<26+K6.
n=M+1 (S o Sc)

For fixed K, we can choose € adequately so that 2¢ + Ke is as small as we want it to be.
Hence, we have shown that the series converges uniformly on every set Fj, which implies that
f(s) is holomorphic on these sets. Now, since being holomorphic is a local propriety, f(s)
must be holomorphic everywhere on F. [

In the introduction, we have seen that the coefficients of the product of two Dirichlet series
or two power series are given by a convolution product. More precisely:

Proposition 5. Let f(2) = >, ganz" and g(2) = >, bn2" be two power series with radius
of convergence being R and Ro.

Then the power series h(z) = Y, ~qcn2™ with cn = >, agby converges for all z <
min(R1, Re) and then we have h(z) = f(2)g(z).

Proposition 6. Let f(s) = - ann™ % and g(s) = >~ bun™? be two Dirichlet Series with
abscissa of absolute convergence being 0,1 and o42.

Then the Dirichlet series h(s) = Y. - can™° with ¢, = Y 4, axby converges for all
o > max(oa1,042) and then we have h(s) = f(s)g(s).

Proof. We can write formally
D apk Y bl =)0 Capbi(k) =) 0 (> apb).
E>1 I>1 E>1 121 n>1 kl=n

The second equality is justified if the sums converge absolutely, which is the case if we suppose
o > max(041,042). O
We give some examples of arithmetic functions and formulas, and their generating functions.



Example 3. Let d(n) denote the number of divisors of n. By definition, we have

d(n) => 1.

din

The translation of this formula in the analytic world is

n=1

Now let v(n) be the number of prime factors in n, and let u(n) = (=1)*™ is n if square-free,
and p(n) = 0 otherwise. u is the mobius function, and satisfies

_ lifn=1
%:M(d) o { 0 otherwise

The analytic equivalent is

u(n
W~ 1669,
n
n=1
Recall the Von Mangoldt function A from the introduction (1). Since log(n) = > .,_, A(k)
for alln € N*, and {'(s) = >, —log(n) for all R(s) > 1, we have the analytic relation:

ns

A _ ey cts).

ns
n>1

We will often consider integrals along vertical lines, so its important to have an idea of
the behavior of Dirichlet series as t goes to co.

Proposition 7. If f is a Dirichlet series, then for all0 <e < <1
f(s) = O((It] +1)'~°*) (9)
uniformly for all o > o. + 9.

Proof. Recall from Proposition 2 that for all oy > 0. and N > M,

N N
E apn” ® = R(M)(M + 1)50—5 _ R(N)Nso—s + (80 _ S) R(t)tso_s_ldt.
n=M+1 M+1

Thus by taking sy = +0. + € and by letting N go to oo we get

00 M
S =3 aun " + ROM)(M +1)74° 4 (g +e—s) [ R(E)H"1dt.
n=1 n=1 M+1

Since the Dirichlet series f(o. + €) converges, its general term vanishes. Hence there exist a
uniform constant C so that a,, < Cn%*¢. Furthermore, the function R vanishes at oo so it is
bounded by some constant. Hence

o—0.—€

M
f(s)<C <Z noote ¢ MOt 4 loc+e—s M”C+6”>

n=1



Moreover, we know that Eﬂle n0te < fOM u=tedy = CM' %€, which is the dominant term.
By choosing M = |t| + 1, we get the O term of the Proposition. [

The most famous Dirichlet series is the Zéta function ((s) = >, n~°. We will prove its
analytical properties in the next section. The Zéta function is closely connected to the study
of prime numbers, since it can be written as the Euler product ((s) = [, jyime(l — p~*)~L
We can give such products for other Dirichlet series:

Proposition 8. If a,, is totally multiplicative, in the sense that an., = anay,, for all integers
n, m, then we have the Euler product:

Zann*s = H (1 —app%)~*

nxl1 p prime

which holds for every s such that o > og.

2 The Perron formula

In this section we will prove the Perron Formula, which gives us the sum of the coefficients of
a Dirichlet series as an integral. We will then apply the formula to evaluate the sum »_ _ 1.
Of course, we don’t need the Perron formula nor complexe analysis to evaluate this sum. But
it is interesting to see what error term the Perron formula gives in this simple example, in
order to have an idea of the limitations of this method.

2.1 Perron formula

We have seen that the Dirichlet series enable us to change an arithmetic problem into an ana-
lytic one. Reciprocally, every Dirichlet series is associated to a unique sequence of coefficients
(an)nen. But how do we in pratice have access to these coefficients? The Perron formula
gives us an answer in the form of an integral.

Theorem 1. Let x € RT\N and ¢ > 0. We also suppose that c > o. — c. Then:

1 c+100 w

Z apn~® = — f(s+ w)%dw. (10)

2 c—100

The idea of the proof is to write f as its Dirichlet series and then invert the sum and the
integral. The obtained sum can then be evaluated by using the next Lemma

Lemma 1. Let o > 0. Then

ot 0 if a<l
—dw =
c—ioo W 1if a>1

1 c+100

2T

Proof. Case o > 1: In this case, for all oy, < ¢, we have o, log(a) < clog(a) so a” < a“.
Hence, a® is bounded on the half plane {0, < c}.

Now we denote by Cg the left half-circle centered in ¢ and whose diameter is on [c—iR, c+iR).
For R sufficiently large, Cr contains the point 0, which is the only singularity of f.



We can also see that wf(w) :>0 1, so the residue of this pole is 1. By the Residue Theorem,
w

we conclude that

1 a% 1 cHill qw

— —d — —dw = 1. 11
ur Jo, w w+2i7r c—iR W v (11)

On the other hand, we can evaluate integral (11) by using integration by parts. For fixed R,
we will integrate o and derivate %

w w ct+iR w
/ L dw = [ a ] —I—/ ;Lidw. (12)
Cp W wloga],. ;,n  Jo, w?loga

Since a" is bounded on the half plane o, < ¢, we can see that

|: a¥ :|c+iR
wloga | . _;p

ac+iR c—iR

(c+iR)loga (c—iR)loga

c—iR

(c—iR)loga

ac+iR

(c+iR)loga +

IN

aC
Y, W —
V2 + R%loga

which goes to 0 as R goes to co. Now we show that the integral in (12) also goes to 0.

a” J a’ d
< -
/CR w2loga v _/CR (2 + R?)loga v
(&

a

<TR——5—

~ " (R-c¢)2loga’
which goes to 0 as R goes to oo.
In conclusion, we have - fccj;;o %dw =1.
Case o < 1: In this case, for all o,, > ¢, we have oy log(a) < clog(a) so that a% > a°.
Hence, a® is bounded on the half plane {0, > c}.
Let Cr be the right half circle centered in ¢ and whose diameter is on [¢ — iR, ¢ + iR]. Since
¢ > 0, the curve consisting of C'r end its diameter doesn’t contain any singularities of the
integrant.



o
(o)
; =]

Hence, by the Residue Theorem

w c—iR w
/ a—dw + / a—dw =0.
CR w c+iR w

By a similar argument, we can show that the first term goes to 0 as R goes to oc.

. c+i00 qw
In conclusion, we have % [ dw =00
1T JC—100 W

We can now prove the Perron Formula.

Proof. Suppose in the first place that o, < o + ¢, so that f is absolutely convergent on the
vertical line of abscissa o + ¢. Then we can write f as its series and invert the sum and the
integral:

1 c+oo ¥ 1 c+oo v

— f(s+w)—dw = — Z an/ n= Y —dw (13)
27T Jol oo w 2im = oo w
1 ct+oo (g)w

= — —F S —dw. 14

2im nzz:l 't /COO w (14)

We now need to show that the integral in (14) is equal to 1 if x < n and to 0 if x > n. This
is indeed the case because of our Lemma.

Now we suppose that 0. < ¢ + ¢ < 0,. Let @ > 0, — 0 and consider the rectangle vy with
vertices ¢ + 1, a + i1, a — T, ¢ — 71", for some T that will go to oc.

By the Residue Theorem we have
x’UJ
/ f(s+w)—dw = 0.
R w

Since the integrant has no poles besides 0, which is not inside the rectangle.
Now, on the right side of the rectangle, f converges absolutely, and we already treated that

10



case. The left side is the integral we want to compute. To show that both integrals are equal,
we only need to show that the integrals of the green horizontal sides of the rectangle tend to
0 as T goes to co. This can be done by using the vertical growth of dirichlet series (9):

f(s 4+ w) = O((t + S(w)) '~ 7m0+

which is a O(S(w)?Y) whith 0 < v < 1. Hence f(s + w)% = O(|S(w)|*~1), which shows that
the horizontal integrals converges to 0 as T goes to oco.

In conclusion, the integral of the red sides are equal, and we have proven the Perron For-
mula in the general case. [J

2.2 Example on the Zeta function

Recall the Mangoldt function A that we introduced in the beginning, and its associated
CI

Dirichet series F' = —F- Because of the Perron formula, we know that
1 2+100 /
ZA(n) = / _Gw) z¥dw.
2im 2—i00 C(w)w

n<x

We gave the idea of how to evaluate such an integral in the introduction. The obtained error
term is not optimal, but it is a o(x), which is sufficient for the prime number theorem. Now
let us apply the same method to evaluate ) _ 1.

We apply the Perron Formule to the Zeta function. We can take ¢ = 1 4+ € and s = 0, which
gives us:
1 1+e+ioco w
Y= C(w) 2 duw. (15)
n<x w

2im 14+e—ioco

Now we cut the integral at ¢ 4+ 7" and ¢ — i7", as in [Mur08], and we know the error term:

c+1i00 c+iT 0 c -1
/ @xwdw = / (w):v“’dw + 0 < Z <$> min (1, 7! >>
c—100 w c—iT" w n

n=1
The summation in the O-term corresponding to n < x/2 or n > 3x/2 is bounded by O <:§f>,

log z
n

and the summation corresponding to z/2 < n < 3z/2 is bounded by O % log(z)? ).

To evalute the remaining integral, we consider the curve C consisting of the three segments
[c+iT,1/2+4T], [1/2+4T,1/2—iT) and [1/2 —iT,c—iT]. By the residue Theorem we have

c+iT
/ (w)a:wdw =z — / @1‘%&0.
c—iT w c w

To estimate the integral over C, we can use the estimate

C(s) = O(|t|*/?), for o > 1/2 and when |t| = .

We find that the integrals over the two honrizontal segments are O TﬁjQ and that the

integral over the vertical segment is O (azl/QTl/Q 10g(T)>.
After putting everything together we get

11



xC
Z 1= $+0<T1/2> +O(m1/2T1/2log(T)>.

n<x

We can take T = 2'/2 to make the error terms equal. In conclusion, we have the estimation

Z 1= .Z'+O<ZL‘3/4+E>.

n<x
We can observe that this method yields an error term which, although sufficient in the case
of the prime number theorem, is not satisfactory. We shall use a different approach to get a
better error term. The idea is to shift the integral of the Perron formula to the left to capture
the poles of the integrand.

c+i00 d—c+ioco

/ Lw)xwdw = Lw)xwdw + / L(w)xwdw. (16)
c—100 w c w d—c—ioco w

where C' is a curve containing all the poles of the integrand. The first integral can be computed

explicitly by the Residue Theorem, and will give us the main term. For the second integral,

we will use the functional equation of ¢ to put it back on the right. Then it can be estimated
and will give us an error term. In the next section, we are going to see the functional equation

of .

3 Functional equation of (

3.1 The Gamma function

We define the Gamma function in the half complex plane for every o > 0:

I'(s) = /000 e Tt lda. (17)

The Gamma, function has a central role in functional equations of Dirichlet series. Therefore,
the study of its analytical properties is essential. Each proofs of the following results are
detailed in [MV12] First of all, we shall extend I" on the complex plane.

Theorem 2. I' can be extended to a meromorphic function on the whole complex plane. It
has poles on every negative integers. If n is a negative integer, then its residue in s = n s
given by

feg 1) = {2

We will now give two asymptotic results of the Gamma function. The first one is the
Stirling formula:

Theorem 3. (Stirling) We have
. 1 o1
T +iy)] ~ exp(— 27rry|)|yr Nox (18)

as y goes to oo, uniformly in a vertical strip r1 < x < x2.

Theorem 4. For any o € C and § > 0,

—_

logT'(z4+a)=(z+a—-1/2)logz — 2z + — log (2m) +(’)<> (19)

E

as ly| — oo, the implicit constant being uniform in —m 4+ § < arg(z)

12



3.2 The Zeta function and L functions

It is time to look at some examples of Dirichlet series. Consider the sequence a,, = 1 and
the associated Dirichlet series. Because of the Riemann Criterion,, we now it has abcissa of
convergence (and also absolute convergence) o. = 0, = 1, defining a holomorphic function on
the half plane o > 1.

Definition 3.1. The function definied by
((s)=> n* (20)
n>1
for o > 1 is called the Riemann Zeta function.
It is known that this function can be extended to a meromorphic function with an unique

simple pole at s = 1, with residue 1. Moreover, ((s) is verifying the following functional
equation:

Theorem 5. (Functional equation of ) For all s € C other than 0 and 1, we have

(3 )at =c-ar(F57)a 7 (21)

Remark. This last equation can be written in a simpler way by considering a slight variation
of the Zeta function (2(s) = >+, ﬁ Hence, we can generalize the definition of Dirichlet
series by defining them as series of the form » -, an/p, where (f1n)nen is any increasing

sequence going to oo.

Remark. The functional equation (21) has two points worth mentioning. First of all, there is
an axis of symmetry of abscissa 1/2. Secondly, there is the same Gamma function on both
sides.

We can now take a look at Dirichlet L-functions, which have very similar functional
equation.

Definition 3.2. For every k € N*, we define a Dirichlet Character mod k as being a morphism
X from the multiplicative group (Z/kZ)* into C*. Then, we can define a function x : Z — C
in the following way:
v | x(nmod k) if (n,k)=1
x(n) = { 0 else ’
Without confusion we shall denote x as just x. The set of charaters modulo k forms a group.

We denote x¢ the trivial element of this group, called the principal character, when there is
no ambiguity about k.

Remark. If  is character modulo k, and if k" is a multiple of k, then we can define a character
X’ modulo &’ by

v x(n) if (n,K) =1
X(n) = { 0 else ’

In this case we say that x’ is induced by . If a character is not induced by another character
of inferior moduli we say it is primitive.

Definition 3.3. Let x be a Dirichlet character, we define the associated L-function as the

Dirichlet series (n)
x(n
L(X’ S) - Z s

n
n>1

13



Since x is completely multiplicative, we can develop L(y, s) into an Euler product.

Proposition 9. For every o > 1,

Lix,s)= [[ (=xp )"

p prime

Since |x(n)| < 1 for all n and all characters x, the abscissa of absolute convergence is
always at most 1. The same can be said about the abscissa of convergence of L(xo, s), the
L-function assiociated to the principal character. But we have more: using the Euler product,

we can write
Lixo,s)= [ @=p )" =) [ -p7.

p prime pﬂg
ptk

Hence, we see that L(xo, s) can be extended to an analytical function over the complex plane,
with an unique simple pole at s = 1. Furthermore, the residue of this pole can be computed
and is equal to @

If x # Xo, then the oscillations of y are sufficiently large to show that the sum ) _ x(n) is
bounded for all x. This is enough to show that

Proposition 10. If x # xo is a character modulo k, then L(x,s) converges for all o > 0 and
defines an analytic function.

Proof. Let S(n) = > x(k) for all n € N. We apply an Abel transform for N > M:

k<n
N —1

x(n)| 11 S(N)  S(M -1)
n:z]w n’ N n—MS(n)(ns (n+1)s>+ N Ms

If ¢ > 0, the left hand side can be arbitrarily small by choosing adequately M. Hence, by the
Cauchy criterion, the series converges. [

Dirichlet L-functions can be extended to meromorphic functions on the whole complex plane.
The proof is very similar to the one for the Zeta function.

Theorem 6. Let x be a primitive character. Then L(x,s) can be extended to a meromorphic
function. If x(—1) = 1, we have the following functional equation:

()-S5 () e

2itm

Where 7(x) = anzl x(m)e

If x(—=1) = —1, we have

S _s+1

G R TG G PR

We shall give the main idea of the proof, without going too deep into details. A detailed
proof is given in [Mun13].

14



Proof. Suppose x(—1) = 1. For every integer n we have
k s/2 k s/2 00 .
(2) G- (et
m 2 m 0
/OO _$< kx >S/2dx
= e —_— J—
0 ™2 x
= /OO 67%1‘8/2@_
0 X

To obtain the last line, we changed the variable by a dilatation of ”T"Q
Now we can take the sum over n
k>5/2 <5) s
— (= L(X7S)_/ 5/2 1 X E dx
(2) r(3)eoen=] z
2
n>1 n>1
S [
n>1 n>1
7\""1/21!
Put 6(z) = > -, x(n)e” & . By the Poisson formula, we can get a functional equation

verified by 6, and thus deduce the functional equation for L(y, s):

o) = () ot

for all z > 0.
Using this functional equation in the second integral above gives us

<k>S/QF<S>L( s) = /OO 2*2719(x, x)dx + W/Oo x~327129(x, ) dx (24)
T 2 X? 1 X? T()Z) 1 X? *

And by replacing s by 1 — s and x by ¥,

(i)S/QFG)L()‘(,l—s): /1°°x—8/2—1/20< >dw+f(lf) /1°°x5/2-19<x,x>d:c. (25)

Moreover, it can be shown that |7(x)| = k/2, so that equation (25) is just (24) multiplied by

fgj This leads us to the functional equation (22).

Now if x(—1) = —1, we follow the same arguments but with some slight modifications. First
of all we note that for all n,

1+s/2  en?a
O e
e

n=>0

7Tn2:E

Then put 0(z) = >, nx(n)e” *

tional equation for 6:
T(V0(x, x) = ik Px7%6(x, 1/).

And deduce from this the functional equation for L(x,s). O

. Again, we can use the Poisson formula to get a func-
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4 The main O-Theorem

Our goal is to study the sum of the first coefficients of a Dirichlet series. We will see during
the proof of our main theorem that, in order to assure the convergence of some integrals, we
need to add some weights to the coefficients. In section 4.1 we will talk about the Cesaro
weights. Once we get the estimate for the Cesaro weights, we need to reduce the weights.
This can be done by applying some operator, that will be the subject of section 4.2.

4.1 Cesaro weights

For every k € N, put

1
A == —n)k. 26
ne
Note that Ag(z) is just the sum »_ _ a,. We have a result similar to the Perron Formula
propositionLet z € RT\N and ¢ > 0. We also suppose that ¢ > 0. — ¢. Then
1 c+i00 r
Ap(z) = / M:L’des. (27)
2T Joioo T(s+k+1)

Proof. The proof is very similar to the proof of the Perron Formula. In the right hand side
of (27), we espand f as its Dirichlet series and invert the integral and the sum.

[e.9]

c+i00 F(S) Tk
n — 2 x%""ds.
Za /c_ioo I'(s+k+ l)nsx °

n=1

Take the nth term of the sum, and put a = z/n

c+100 F(S)
k s
n ——————a’ds. 2
n /H-OO Ts+kt+1) ™ (28)

If & > 1, then the integral is equal to 0 by considering the left half circle centered in ¢ and
with radius R, as in the proof of Perron’s formula. There are no poles in this circle, so the
integral is equal to 0.

If o < 1, we consider Cgr the right half circle centered in ¢ and with radius R. If R is
sufficently large, this circle contains all the poles of the integrant, which are all integers in
] —k—1,0].

It can be shown that the integral is equal to the sum on the residues. Since all the poles are
of order 1, the residues can easily be computed. Let [ be an integer in [0,k + 1], so that —[ is
a pole of the integrant, then

I'(s) PR I'(s) s
£§1(F(s tE+D)" )= slggz(s * Z)F(s tE+1)"

a_l .
T kD (s~ UT)
_ Ofl (—l)l
(=l +k+1) 1

1 I(k+1)

T T(k+ 1)aFD(k+1— )l

ak—l(_l)l
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Hence (28) is equal to the sum
an

We recognize a generalized binomial formula, giving us

1
k k
n /7 1 1\ k. - 1
I'(k+ 1)0/“( )

After some simplifications, we finally get
_ M )k
SR

which correspond to the general term of the sum in (26). O

4.2 The operator A/
In this section we shall introduce a very useful operator for our theorem. We start by giving
a very analytic definition.

Definition 4.1. Let p be an integer and F' a function of class C?. For every y > 0, we define
the finite difference by

zty ity  pla+y tp—1+y
APF(z / / / / FO/(t,)dt,dt, 1 - - - dty (29)

Remark. AO is the trivial operator and AIF( F(y) — F(x).
Hence we see that Al acts like a discrete derlvatlon.

Of course, because of the linear nature of the integral and the derivative, it is not difficult
to show that

Proposition 11. The operator A} is linear.
It is interesting to note that this operator has also a more arithmetical definition.
Proposition 12. We have
p
—u (P
ApF(e) = S0 (0) Flo ), (30)

v=0
Proof. We will proceed by induction. The case p = 0 is trivial. Let us suppose that (30) is
true for some p.

z+y ptity  ptoty tpt+y
AP (2 / / / / F)(z)dt, 1 dt,...dt

- /:ﬂl Zp:(—1)ff” <Z> F'(t + vy)dty

v=0

=S (O) (R k) P )

p

— 1(_1)0—”—1 < P >F(x +vy) + 2:(—1)9‘”‘1 <5>F(3: + vy)

v—1
v=0

= VZ_O(_1)PV+1 (pj 1>F(x + vy).

Hence the proposition is true for all integer p. U

17



Remark. This last definition is more general than the first one, since it covers all functions, and
not just functions of class C”. However, we will only be dealing with holomorphic functions,
therfore both definitions can be considered as equivalent.

The next proposition shows how the A} operator enable us to reduce the weigths.
Proposition 13. For every integer p and y > 0

A0 = el O X ). (31)

<A <z+py

Proof. We start by splitting the sum and applying the linear proprety of the A operator.

APA,(z) = AP < > a”M)

An<z
< _
_ ;0(—1»—” <5> An;yy a"W
Af(@=An)?

Then, since the pth derivative of (x — \,,)? is I'(p + 1), it is easy to see —rorn - =Y

Furthermore, the dominant term in the second sum is when v = p. Thistermisa O 32, .\ .y, ]an|yp> .

This is exactly the O term in (31). O

This proposition is very interesting, because it shows that in order estimate the sum of the
first coefficients of a Dirichlet series, we can estimate any Cesaro weight A, and then apply
the operator AY. This will be the general idea of the proof of our main O Theorem.

Finally, we shall give the behavior of A)F(z) for some function F.

Proposition 14. Let F' be a function of class C*°, and suppose that F(x) = O(z%) and that
F®)(z) = O(z?). We also suppose that y = O(x). Then

APF(x) :{ Oggz;; . (32)

Proof. To get the first term we use equation (30). Since the sum is finite and

F(z+vy) = O((x +vy)*) = O(z®), we have AjF(z) = O(z®).

On the other hand, we can give an estimate for A} by using equation (29). Indeed, the
integrand is dominated by (z + py)®, which has same order as z” since y = O(z). Since we
take the integrals over segments of lengths y, the result is dominated by y?z?. O

4.3 Capturing the poles

Let ¢ be a Dirichlet series, we shall denote

lo) = g2 [
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where C is a curve which encloses all the poles of the integrand. Note that Qq(x) correspond
to the first term on the right hand side of (16). It is the integral that we get when we shift
the line of integration in the Perron formula.

Since we will be dealing with more general Cesaro weights, we shall consider the following
definition:

Definition 4.2. For every integer p, let

1 F(8)¢(8) s+p
= | T ysteg 33

Qp(x) 2,”1_ /;'p F(3+p+ 1)1' S, ( )
where C, is a curve containing all the poles of the integrant.

Because of the Residue Theorem, we can compute the value of Qo(z) with the residues of
the integrand. This is done in the folowing proposition.

Proposition 15. For every pole £ of @ms, we have

Res(gf)(s)xs) = %O og(z)e! (34)

s=¢£ S
where r¢ is the order of the pole.

Proof. Let’s develop ¢, z° and % into their Laurent expansion:
e ¢(s) = 2797% an(s — )"
o 27 =1t} (s —€)"log(x)"

° % = ns0Cnl(s —&)"

Using Theorem 5, we can compute the residue of the product at &:

I§f§<¢f)xs> =zt Z %log(w)lcm. (35)
kA-lHm=—1

The biggest term in this sum is when & = —r¢, [ = ¢ — 1 and m = 0. Since coefficients a,

and ¢, only depends of ¢, we conclude that Res§(¢(s) 2%) = 2% E]og(z)¢ 1. O

S

In conclusion we have a good estimate for Qq:

Qo(z) < > 2™ Olog(z)e". (36)
£
Since the p™ derivative of Q, is Qo, we have by definition
z+y ity tp—1+y
AfQp(x) = / / / Qo(tp)dt,...dt (37)
x t1 tp—1

This gives us a relation between @, and Q.

Proposition 16. Assume y = O(z), then

APQy(x) = Qo(z)y” + O <xq_1(logr_1x)yp+1>. (38)

where q is the largest real part of a pole with greatest real part, and r is the mazimum order
of a pole of real part q.
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Proof. We start by writing Qo(t,) = Qo(z) + f{;” Qp(s)ds.
Note that Qp(s) =< D ¢ (qsq_llog’”_ls + 897 (r — 1)logr_2s> = 597 og" s,
By putting this into (37)

z+y  prtity to—1+y rtp
APQp(r) = Qo()y” + (’)</ /t /t / g171 logT_l(s)dsdtp...dh).
z 1 p—1 T

The integrant in the O-term is smaller than (x + yp)?~ ' log" (x4 yp). Since y = O(z), this
has the same order of magnitude as 271 log" ™! (x). After taking p+ 1 integrals over segments
of lenghts smaller than yp, we finally get the O-term in equation (16). O

4.4 The main theorem

We will now consider two general Dirichlet series ¢(s) =, -, ‘;\—g and (s) = 3,5 /%’ where
(An) and (py,) are two increasing sequences of real numbers going to co. We also assume that
they satisfy the following functional equation:

A(s)p(s) = A(6 — s)1p(6 — ) (39)
where A(s) = HZJ,V:l I'(ays+ By) is a product of gamma functions with o, € R and 8, € C. §

is a positive real number.
Before giving the main Theorem, we shall introduce the following notations:

e A=3 .
e (5 € R is such that 1(3) converges absolutely.
e ¢ is the real part of the pole of ¢ with gratest real part.

e r is the maximum order of the poles with real part q.

e ¢ < 1/2is such that 5 < 1 and there exist an integer n such that 0 < {%49} < 1.
e u=0-0/2—-1t/2A.
The following Theorem was proven by Chandrasekharan and Narasimhan in their article [CN62].

Theorem 7. Suppose that all the singularities of ¢, as defined above, are poles and that there
s a finite number of them. Assume also that A > 0, then we have

Zan - QO(«T) — O($5/2t/2A+2Anu> + O(qu/QAnlogrlx> + O( Z ’an|>

" r<n<z’
where n = 0 and =+ O<x1”1/2A>,

Chandrasekharan and Narasimhan treated the case A > 1, where t can awlays be chosen
to be 1/2. We propose this generalization for the case where A > 0. We shall prove this
Theorem in three steps. First of all, we will write A,(r) — Q,(z) as asum ) -, %I(wvn),
where [ is a function defined by an integral. Secondly, we will give an estimate for this
function I and for I(). This estimate will give us the first O-term. Finally, we shall use our
operator Aj to deduce a formula for Ay and Q. This operation will cost us the two ther
O-terms.
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4.4.1 Evaluating A, — Q,
For p > 0, Let

Ay(z) = PES) > an(z — M)

An<x

For ¢ sufficiently large, that we may fix later, we have
1 c+1i00 r
Ap($) = / 7(8)¢(8) z5TPds.
iy c—i0o F(S + 1% + 1)

If ¢ is large enough, we may also assume that all the poles of the integrant are in the strip
§ —c < o < c. Hence, because of the Residue Theorem, we have

1 I'(s)o(s)

% 71“(5 Ty 2" Pds = Q,(x) (40)

where TR is the rectangle with vertices at ¢ + 4R and § — ¢+ iR, and

L F(S)@(S) $8+pd8

@ =5 cp D(s+p+1)

where C), encloses the same singularities as the strip d —c <o <ec.
In equation (40), we can let R go to oo to get

L et T(s)g(s)
Ap(x) — Qp(x) = 2Z.W/(S_C_iOO Tt p+1) 1)96 TP ds.

Now we can change the variable with s’ = § — s and then apply functional equation (39):

1 /c+ioo I‘((S — S)A(S)lp(S) m5_5+pd8. (41)

Ap(w) = Qplx) =

27 Jojoo T(6—s5+p+1)A(5 — 5)
Now put
1 fetieo L6 — s)A(s) 5
I(z) = — sthq 42
(@) =3 /C_m TG —s+p+tDAG—s)" % (42)
so that

c+1i00 _ S)A(S 5
A . S+p 43
() " 2ir / —S+p+ 1)A(S s) nZ;l 78 (43)

/ eHioe I'(6 — s)A(s)

ico T(0—s+p+1)A(5 — )(l"/in)‘;*&#P (44)

TL/

Z I(zpin). (45)
n>1

To assure the convergence of the integral in (41), we need to study the asymptotic behavior

of the integrand. This can be done by using the Stirling formula (18).

The integral converges if and only if

2Ac — Ad < p. (46)

Thus, by chosing p sufficiently large, the previous calculations are justified.
Moreover, to justify (45), we also need to take p sufficiently large. In the next we will study
the asymptotic behavior of I to find the lower bound of p and also to estimate A, — Q.
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4.4.2 Estimate for I(z) and 1) ()

We shall now study the asymptotic behavior of the integrand in (42). In order to do that, we
will first take the log of the integrant and apply (19). We get

log G(s) — log(W @8) B+ (’)<‘i|> (47)
Where
B I'(6 —s)A(s)
Gls) = [ 145 a6 =)
=1/2+ E —1/2),

>\=,u+A5+p+1,

N
= 2(2 ay IOg(aV) — Alog A)7

N
B= —5Zal,logozy+ (A6 +p+1)log A.
r=1

Now take the exponential on boh sides:
G(s) = H(s)eo(ﬁ)

where H(s) = Efst‘“g eB1Os,

1
Finally, by subtracting H(s) on both sides and using ) 1 = (’)(é), we get

G(s) — H(s) = H(s)O <|i|>

Now we can write I(x) by using the new function H.

ctioco
I(z) = 1/ G(s)z®tP~%ds

27T Jo—ioo

1 c+1i00 1 c+100
= {H(s)(’) <> } TP ds + / H(s)z0tP3ds.
2w c—100 |S| c—100

The second integral can be computed explicitely by using Bessel functions:

i
i c+ioo H(S)l’6+p_sd5 _ C(yl/(QA))A6+(2A_l)pj2u+A5+p(2y1/(2A))

2w c—100

where J is the Bessel function.

Thus, by using the asymptotic behavior of 7, which is of order z=1/2, we conclude that

c+i00
/ H(s)z?+rP=%ds
C

—100

-0 <$5/2+(11/(2A))p41A> '

On the other hand, we can shift the line of integration of the first integral until we hit a pole.
The poles of the integrant are the § + k where k is a positive integer. Hence, by shifting the
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integral to the right, the first pole we will hit is d + v, where v, is the smallest integer bigger
than %. By hypothesis, we can choose p so that v, > %.

Thus we have

ctioco 1 s c+t/(2A)+ico 1 s
/ {H(s)(’)()}x TP s = / {H(s)(’)()}x TS (s
c—100 ’3‘ c+t/(2A)—ioc0 ’3‘
-0 <:B(A5+(2A—1)p—t)/2A> )

In conclusion:

I(l’) -0 <$(A6+(2A—1)p—t)/214> ) (48)

At this point we are able to establish that for (45) to hold, we need to have
p=2A8— Ad —t.

p can be chosen arbitrarely large, so this is not a problem. Furthermore, this also shows that
we can’t have /2 +t/(2A) > f3, because then (45) would be true for p = 0, which is clearly
not the case since Ag(x) is not continuous. Hence, we have

B—38/2—t/(24) > 0. (49)

To get an estimate for 1()(x), we need to derive (42). However, this is not always possible
because the abscissa of convergence ¢ has to verify (46). Hence, we shall first shift the line of
integration, in order to later derive inside the integral. We shift the vertical line to a curve
consisting of the lines ¢ + it with |¢| > R , and the three sides of the rectangle with vertices
co—1iR,co+iR,Co+r+iR and cyg+7r—1iR, for some R and some r and with ¢y = g. During the
shift, we have to be careful to not cross any poles. This can be done by chosing adequately
R and r.

In the image, we shift the blue vertical line to the red one, by taking care to not pass by any
red cross, which are the singularities of the integrant.
After derivating inside the integral we have

10)(z) = 1/CG(5)x58ds.

C 2im

We can now use the same method we used to estimate I(x) to get the estimation:

1¥)(2) =0 (x5/2254>. (50)
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4.4.3 Reducing the weights

The last step consists at applying the operator A} on both sides of (45) to get a result for Ay
and @Qg. By the linearity of the operator, we get

AL A () — ALQ,()

=5 5+p o1 (zvy). (51)
n>1 Un

Because of (38) and (31), we have

o) - Qo) +0 (21 Nog eyt )10 Xl =5 Y 5+pAPI<azun>

r<Ap<z+pY n>1 H

Now we shall give the behavior of the right hand side. We can use (32) to give an estimate of
AGI(xpn).-

p O ()12~ 1/ @A +p(1-1/(24)))
AyI(CC,Un) = O(yp$5/2_t/(2A)MZ/Q_t/(zAHp)

For some z € R that we might fix later, we can split the sum on the right hand side:

1 bn, 1 bn, bn,
i 2 ) = 5 3 2 AT + Y G e
n>1 Un<2 Hn Un>z Hn

|0y, §/2-t/(2A
:o<§:MW%U@®¢x/ /(24)

Bn<z

|0y §/2—/(2A)+p(1—1/(24))
T O< Z M6/2+p/(2A)+t/(2A)x / e ).

Hn>2

Moreover, we know that §/2+t/(2A) < 8 by (49), and since p can be chosen to be arbitrarily
large, we may also assume that §/2 +1¢/(2A4) + p/(2A) > 8. Hence, on the one hand we have

T by -y |bn|
S2H[CATp[A) — Lo IHI[CAp[RA) B B

pn >z M i >2 Hn
< 2B-0/2-/(24)=p/(24) Z 1bn] O<Z,66/2t/(2A)p/(2A)>7
Un>Z Hn
while on the other hand
—5/2—t/(24)

bn, by,
LIRS U

Un<z Fm Hn <2 ”

|6, |
B—8/2—t/(2A) B—8/2—t/(2A)
<z E ﬁ = ( >
< TL
Thus we conclude that:

Z |5+ T(apn) = O<ypx5/2t/(2A)Zu> " O<$6/2t/(2A)+p(11/(2A))Zup/(2A)>
2 P

where u =3 —§/2 —1/(4A). Now we have to make a compromise between the two O-terms.
We still have a choice to make for y and z. We can start by setting
p2A-1

y2A :

A
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Which gives us

1 b, o .
%Z 515 A0 (zpn) = @(yp 2Au,,6/2—t/(2A)+(2A-1) >
n>1 Hn
Putting this into (51) and using (38) and (31) we get
Ap(z) — Q) — Oy~ 2Augd/2-t/24+(2A-1)uy

+O(yzi log" L )

+O( Y aul).

< An<x+pyY

And put

y = g1 1A=

in order to simplify the first O-term. We keep the choice of n > 0 open. In some cases, 7
could be chosen to optimize the three O-terms. [J

4.5 Dirichlet series with positive coefficients

In a lot of cases the coefficients of a Dirichlet series are positive. This is the case for ¢ or for

> %. The function Ag(z) is therefore monotone, and thus we can get a better estimate.

Theorem 8. Under the same conditions as in Theorem 7, and with the additional condition
that a, > 0 for allm > 1, we have

Ao(fL‘) . Qo(x) _ O<:L,5/2—t/(2A)+2Anu> + 0<5L‘q_1/(2A)_n log(x)r—1> ) (52)

Recall that Qo(z) < z%log(x)"~!. Hence, we can observe in the second O-term that we
gain 1/(2A) compared to the main term.

Proof. Since Ag(z) is monotone, we have for all ¢t € [z, z + py]
Ao(z) < Ao(t) < Ao(z + py)
so that, after taking the integral
Y’ Ao(z) < AJA,(z) <y Ao(z + py)
Now divide by y” and substract Qo(x):
Ap(z) — Qo(x) < yprgAp(a;) — yprZQp(x) + O(qu log(:v)rly)

-0 (m5/2—1/(4A)+2A17u) +0 (xq—l/(2A)—17 log(x)r—l>
< Ao(z + py) — Qo(z).

Furthermore, we can see that

Qole + py) — Qola) = O(xq-lylogw-l),
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which is just a Q[ z7~1/@A)-n log(x)"~! ) by taking y = (’)(xll/(m)")

Thus we have the proper bounding to conclude

Ao() = Qo(x) = O (w‘*/ 2 (QA)“A”“) +0 (qu/(QA)n 1og(g;)’“1> 0

If two Dirichlet series ¢ and v satisfy all the conditions of Theorem 8, and if the greatest
order of a pole with greatest real part of ¢ is 1, then we can take
_t+2Aq— Ao -1
 4A%2u+24

to make the two O-terms equal. In this cas, we have
Aq—As—
Ao(w) — Qolz) = O (xq-1/<2A>—”fA2%+2A )

In their article, ChandraseKharan and Narasimhan presented the case where A > 1, and thus
t =1/2. We can now take a look at some examples where A = 1/2, as for ¢ or L-functions.

4.6 Some examples

The Zeta function satisfies (39) and has positive coefficients. In order to apply Theorem 8,
we should take @(s) = p(s) = m5/2((s).

The parameters are 6 = 1, A = 1/2, ¢ = 1 and » = 1. For every integer n, {”5;145} =1/2,
hence we can take t = 1/2. For 8 we can take 1 + €, so that u = €, and

Ap(z) — Qo(z) = O(a"€) + O(z™").

Hence, with n =0
Ap(z) — Qo(z) = O(1).

Of course, Ag(z) is just a sum of 1’s, and is therefore equal to [z7~'/2]. On the other hand,
7~%/2((s) has only a simple pole at s = 1, hence Qq(z) = 7~ /%z. So we find what we would
expect.

Let x be a primitive, non trivial character modulo k. We have seen that the L-functions
L(x,s) and L(x,s) are related by equation (22). We can apply Theorem 7 with ¢(s) =

fz;) (%)_S/QL(X, s) and 9(s) = (%)_S/QL()’(, s). The parameters are the same as for the Zéta

function, and we also get

Ap(x) — Qol(z) = O(1).

Here we have
k1 /2

AO(CU)—% Z x(n),

n(E)/2<z

and since L(x, s) has no poles, Qo(z) is a constant. Hence we conclude that

Y x(n)=0(1).

n<x
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Which corresponds to what we should find.
We now give an example of a less trivial problem. We want to give an estimation of the sum
Y n<x d(n). We can start by giving a simple estimation by writing

Zd(n)zz Z I—Zx/n Z(:p/n—l—(’)(l)) = zlog(z) + O(z).
n<x n<x ab=n a<x a<z

Now we apply Theorem 8 to see what error term we obtain. The main term is given by

x):/cg(::ys

where C is a curve containing the poles of the integrand, which are 1 and 0. The residue at 0
is a constant. For the residue at 1, we can write the following Laurent expansions:

. C() = G- 1)2+5271+
o z* =z +zlog(z)(s—1)+
° % =1—(s—1)+

for |s — 1] < 1, and where ~ is the Euler constant.
Hence the residue of the integrand at s = 1 is z log(z) + (27 — 1)x. Moreover, (? satisfies

_SF2< )CQ( )= —(1—S)F2<1;8> (11— s).

We are now able to apply Theorem 8 with A=1,¢=1,r=2,§ =1, 8 =1+ ¢ and we might
choose 7 = 1/6. We conclude that

Zd ) = x log( )+:c(2'y—1)+0(x1/3+€).

n<x

The smallest value of @ such that >°, _ d(n) = zlog(z) +z(2y — 1) + O(277) for all e > 0 is
still unknown, but it is conjectured to be 1/4. This problem is the Dirichlet divisor problem.
Here we have shown that 6 < 1/3.
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