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Abstract

The aim of this article is to give a generalization of a result by Chandrasekha-
ran and Narasimhan. The Perron Formula reformulates us the sum of the co-
efficients of a Dirichlet series as an integral. This integral can then be shifted
to capture poles, and then shifted again by a functional equation. We shall see
which estimate we can give for this integral, and how does it apply to the case of
L-functions.
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1 Introduction

1.1 Motivation

Given a sequence (an)n∈N, we can consider the associated power series
∑

n⩾0 anz
n. This

series, which converges inside a certain disk (eventually {0}), defines an holomorphic function.
Conversely, every holomorphic function can locally be written as a power series. If

∑
n⩾0 anz

n

and
∑

n⩾0 bnz
n are two power series, then their product is given by∑

n⩾0

cnz
n, where cn =

∑
k+l=n

akbl. (1)

The relation defining cn is a convolution product, that could be described as additive since
the sum runs over the couples (k, l) satisfying k + l = n.
Now we give an example of the multiplicative version of this convolution product.

Example 1. Let Λ be the Von Mangoldt function:

Λ(n) =

{
log(p) if n = pα for some α ∈ N∗

0 otherwise
.

Λ satisfies ∑
dl=n

Λ(d) = log(n) , for all n ⩾ 1.

This sum is different than the sum defining cn in (1). The corresponding generating function

is given by considering the Dirichlet series F (s) =
∑

n⩾1
Λ(n)
ns . We can show that

F (s) = − ζ′(s)
ζ(s) , for ℜ(s) > 1.

We have built a bridge between an arithmetical object and an analytic one. Problems
associated to Λ can now be translated into analytic problems. For instance, it can be shown
that the prime number theorem is equivalent to∑

n<x

Λ(n) ∼ x.

We will see that the Perron formula enable us to write this sum as the following integral:

∑
n<x

Λ(n) =
1

2iπ

∫ c+i∞

c−i∞

ζ ′(w)

ζ(w)w
xwwdw, (2)

for c > 1.We can then give an estimate for this integral by using estimations of the ζ function.
We can start by, instead of integrating over the whole vertical line, integrate over a segment
and estimate the rest. ∫ c+i∞

c−i∞

ζ ′(w)

ζ(w)w
xwdw =

∫ c+iT

c−iT

ζ ′(w)

ζ(w)w
xwdw +R,

for some T > 0 that we might choose depending on x. The new integral can be evaluated by
closing the line of integration to capture the pole at s = 1 of the integrand.
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C

∫ c+iT

c−iT

ζ ′(w)

ζ(w)w
xwdw = x+R′,

because x is the residue of the integrand at s = 1. In [Mur08], the error term R+R′ is shown
to be a o(x). This is the idea of the proof of the prime number theorem.
However, the error term obtained using this method is not optimal. It is not easy to see
because the prime number theorem is not a trivial result. We can follow the same idea to
evaluate the trivial sum

∑
n<x 1. We will see that the error term we obtain in this case is

O
(
x3/4+ϵ

)
, which is a little disappointing. This will motivate us to find a new way to evaluate

the integral in the Perron formula.

1.2 Properties of Dirichlet series

Power series and Dirichlet series have similar propreties, so we shall first give the results for
power series without proving them, then we will give the equivalent results for Dirichlet series.

Definition 1.1 (Power Series). If (an)n∈N is any sequence of complex numbers, we define the
formal associated power series by ∑

n⩾0 anz
n.

Definition 1.2 (Dirichlet Series). If (an)n∈N is any sequence of complex numbers, we define
the formal associated Dirichlet series by∑

n⩾0 ann
−s.

And we shall define both series as functions once we establish some convergence theorem.

Proposition 1. Let f(z) =
∑

n⩾0 anz
n be a power series. There exist a radius R ⩾ 0 such

that f(z) converges for all z such that |z| < R and for no z such that |z| > R. This radius R
is called radius of convergence.

Proposition 2. Let f(s) =
∑

n⩾0 ann
−s be a Dirichlet series. There exist an abscissa σc ∈ R

such that f(s) converges for all s such that ℜ(s) > σc and for no s such that ℜ(s) < σc. This
abscissa σc is called abscissa of convergence.

Remark. This abscissa of convergence might be equal to −∞, in which case the Dirichlet
series converges for all s ∈ C. Furthermore, the abscissa of convergence might be equal to
+∞, in which case the Dirichlet series converges for no s ∈ C.

Since we will often need to consider the real and the imaginary part of some complex
number s, we shall use the following notation from now on: s = σ + it and sc = σc + itc.
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Proof. (Proposition 2) If there is no s such that f(s) converges, then there is nothing to prove.
Hence, we can suppose the existence of s0 ∈ C such that f(s0) converges.
Let R(k) =

∑
n>k ann

−s0 be the rest of the series for every integer k, and consider two integer
N,M and s ∈ C such that ℜ(s) > ℜ(s0) . We can then apply the Abel transform

N∑
n=M+1

ann
−s =

N∑
n=M+1

(R(n− 1)−R(n))ns0−s

=

N∑
n=M+1

R(n− 1)ns0−s −
N∑

n=M+1

R(n)ns0−s

= R(M)(M + 1)s0−s −R(N)N s0−s +
N−1∑

n=M+1

R(n)((n+ 1)s0−s − ns0−s)

= R(M)(M + 1)s0−s −R(N)N s0−s +
N−1∑

n=M+1

R(n)(s0 − s)

∫ n+1

n
ts0−s−1dt

= R(M)(M + 1)s0−s −R(N)N s0−s + (s0 − s)

∫ N

M+1
R(t)ts0−s−1dt.

Let ϵ > 0. We can choose M so that R(k) < ϵ for all k ⩾M :

∣∣∣∣∣
N∑

n=M+1

ann
−s

∣∣∣∣∣ ⩽ 2ϵ+ |s0 − s|ϵ
∫ N

M+1
tℜ(s0−s−1)dt (3)

⩽ 2ϵ+ |s0 − s|ϵ
∫ ∞

M+1
tℜ(s0−s−1)dt (4)

⩽ 2ϵ+ |s0 − s|ϵ

[
tℜ(s0−s)

ℜ(s0 − s)

]∞

M+1

(5)

⩽ 2ϵ+ |s0 − s|ϵ(0− (M + 1)ℜ(s0−s)

ℜ(s0 − s)
) (6)

⩽ 2ϵ+
|s0 − s|ϵ
ℜ(s− s0)

. (7)

So the Dirichlet Series converge for all s such that ℜ(s) > ℜ(s0).
If we now consider the infimum of the real parts of those s0, and note it σc, we have shown
that the Dirichlet series converge for all σ > σc and for no σ < σc. □

Definition 1.3. For a Dirichlet series f(s) =
∑

n⩾1 ann
−s with abscissa of convergence σc,

we can also consider the abscissa of convergence of the series
∑

n⩾1 |an|n−s. This is called the
abscissa of absolute convergence of f .

Remark. If an is positive for all n, then σc = σa by definition, but in general this might not
be true. However, we always have σa > σc.

Example 2. The Zeta function
∑

n⩾1 1/n
s has abscissa of convergence 1, by the Riemann

criterion. Its abscissa of absolute convergence is also 1. Now we will take a look at an example
where σc ̸= σa. Consider

∑
n⩾1(−1)n/ns. Once again, we have in this case σa = 1. However,
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because the sequence (−1)nn−s is alterning, the series converges as soon as σ > 0. Hence
σc = 0. This is actually the case were σc and σa are as far as possible, because we always
have σa ⩽ σc + 1. [MV12]

The general term of a Dirichlet series is holomorphic in s. When we are on the half
plane σ > σa, the sum converges uniformly on compacts, so that the Dirichlet series is also
holomorphic. We will see that this is still true if we only suppose to be on the half plane
σ > σc.

Proposition 3. If R is the radius of convergence of the power series f(z) =
∑

n⩾0 anz
n, then

f(z) is holomorphic in the open disc {z ∈ C
∣∣|z| < R}.

Proposition 4. If σc is the abscissa of conergence of the Dirichlet series f(s) =
∑

n⩾0 ann
s,

then f(s) is holomorphic in the open half plane {s ∈ C
∣∣Re(s) > σc}.

Proof. Let E = {s ∈ C
∣∣ℜ(s) > σc} and for all K > 1 we denote EK = {s ∈ C

∣∣ℜ(s) >
σc, |s− sc| ⩽ K(σ − σc)}.
Note that we have:

E =
⋃
K>1

EK . (8)

We will show that the Dirichlet Serie converge uniformly in every EK . We will continue
from (7), ∣∣∣∣∣

N∑
n=M+1

ann
−s

∣∣∣∣∣ ⩽ 2ϵ+
|sc − s|ϵ
ℜ(s− sc)

⩽ 2ϵ+Kϵ.

For fixed K, we can choose ϵ adequately so that 2ϵ + Kϵ is as small as we want it to be.
Hence, we have shown that the series converges uniformly on every set Ek, which implies that
f(s) is holomorphic on these sets. Now, since being holomorphic is a local propriety, f(s)
must be holomorphic everywhere on E. □

In the introduction, we have seen that the coefficients of the product of two Dirichlet series
or two power series are given by a convolution product. More precisely:

Proposition 5. Let f(z) =
∑

n⩾0 anz
n and g(z) =

∑
n0 bnz

n be two power series with radius
of convergence being R1 and R2.

Then the power series h(z) =
∑

n⩾0 cnz
n with cn =

∑
k+l=n akbl converges for all z <

min(R1, R2) and then we have h(z) = f(z)g(z).

Proposition 6. Let f(s) =
∑

n⩾1 ann
−s and g(s) =

∑
n⩾1 bnn

−s be two Dirichlet Series with
abscissa of absolute convergence being σa1 and σa2.

Then the Dirichlet series h(s) =
∑

n⩾1 cnn
−s with cn =

∑
kl=n akbl converges for all

σ > max(σa1, σa2) and then we have h(s) = f(s)g(s).

Proof. We can write formally∑
k⩾1

akk
−s

∑
l⩾1

bll
−s =

∑
k⩾1

∑
l⩾1

akbl(kl)
−s =

∑
n⩾1

n−s(
∑
kl=n

akbl).

The second equality is justified if the sums converge absolutely, which is the case if we suppose
σ > max(σa1, σa2). □
We give some examples of arithmetic functions and formulas, and their generating functions.
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Example 3. Let d(n) denote the number of divisors of n. By definition, we have

d(n) =
∑
d|n

1.

The translation of this formula in the analytic world is∑
n⩾1

d(n)

ns
= ζ(s)2.

Now let ν(n) be the number of prime factors in n, and let µ(n) = (−1)ν(n) is n if square-free,
and µ(n) = 0 otherwise. µ is the mobius function, and satisfies

∑
d|n

µ(d) =

{
1 if n = 1
0 otherwise

.

The analytic equivalent is ∑
n⩾1

µ(n)

ns
= 1/ζ(s).

Recall the Von Mangoldt function Λ from the introduction (1). Since log(n) =
∑

kl=n Λ(k)

for all n ∈ N∗, and ζ ′(s) =
∑

n>1
− log(n)

ns for all ℜ(s) > 1, we have the analytic relation:

∑
n>1

Λ(n)

ns
= −ζ ′(s)/ζ(s).

We will often consider integrals along vertical lines, so its important to have an idea of
the behavior of Dirichlet series as t goes to ∞.

Proposition 7. If f is a Dirichlet series, then for all 0 < ϵ < δ < 1

f(s) = O((|t|+ 1)1−δ+ϵ) (9)

uniformly for all σ > σc + δ.

Proof. Recall from Proposition 2 that for all σ0 > σc and N > M ,

N∑
n=M+1

ann
−s = R(M)(M + 1)s0−s −R(N)N s0−s + (s0 − s)

∫ N

M+1
R(t)ts0−s−1dt.

Thus by taking s0 = +σc + ϵ and by letting N go to ∞ we get

∞∑
n=1

ann
−s =

M∑
n=1

ann
−s +R(M)(M + 1)σc+ϵ−s + (σc + ϵ− s)

∫
M+1

R(t)tσc+ϵ−s−1dt.

Since the Dirichlet series f(σc + ϵ) converges, its general term vanishes. Hence there exist a
uniform constant C so that an < Cnσc+ϵ. Furthermore, the function R vanishes at ∞ so it is
bounded by some constant. Hence

f(s) ⩽ C
( M∑

n=1

n−δ+ϵ +M−δ+ϵ +
|σc + ϵ− s|
σ − σc − ϵ

Mσc+ϵ−σ

)
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Moreover, we know that
∑M

n=1 n
−δ+ϵ ⩽

∫M
0 u−δ+ϵdu = CM1−δ+ϵ, which is the dominant term.

By choosing M = |t|+ 1, we get the O term of the Proposition. □

The most famous Dirichlet series is the Zêta function ζ(s) =
∑

n⩾1 n
−s. We will prove its

analytical properties in the next section. The Zêta function is closely connected to the study
of prime numbers, since it can be written as the Euler product ζ(s) =

∏
p prime(1 − p−s)−1.

We can give such products for other Dirichlet series:

Proposition 8. If an is totally multiplicative, in the sense that anm = anam for all integers
n,m, then we have the Euler product:∑

n⩾1

ann
−s =

∏
p prime

(1− app
−s)−1

which holds for every s such that σ > σa.

2 The Perron formula

In this section we will prove the Perron Formula, which gives us the sum of the coefficients of
a Dirichlet series as an integral. We will then apply the formula to evaluate the sum

∑
n<x 1.

Of course, we don’t need the Perron formula nor complexe analysis to evaluate this sum. But
it is interesting to see what error term the Perron formula gives in this simple example, in
order to have an idea of the limitations of this method.

2.1 Perron formula

We have seen that the Dirichlet series enable us to change an arithmetic problem into an ana-
lytic one. Reciprocally, every Dirichlet series is associated to a unique sequence of coefficients
(an)n∈N. But how do we in pratice have access to these coefficients? The Perron formula
gives us an answer in the form of an integral.

Theorem 1. Let x ∈ R+\N and c > 0. We also suppose that σ > σc − c. Then:

∑
n<x

ann
−s =

1

2iπ

∫ c+i∞

c−i∞
f(s+ w)

xw

w
dw. (10)

The idea of the proof is to write f as its Dirichlet series and then invert the sum and the
integral. The obtained sum can then be evaluated by using the next Lemma

Lemma 1. Let α > 0. Then

1

2iπ

∫ c+i∞

c−i∞

αw

w
dw =


0 if α < 1

1 if α > 1

Proof. Case α > 1: In this case, for all σw < c, we have σw log(a) < c log(a) so aσw < ac.
Hence, aw is bounded on the half plane {σw < c}.
Now we denote by CR the left half-circle centered in c and whose diameter is on [c−iR, c+iR].
For R sufficiently large, CR contains the point 0, which is the only singularity of f .
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We can also see that wf(w) −→
w−→0

1, so the residue of this pole is 1. By the Residue Theorem,

we conclude that
1

2iπ

∫
CR

αw

w
dw +

1

2iπ

∫ c+iR

c−iR

αw

w
dw = 1. (11)

On the other hand, we can evaluate integral (11) by using integration by parts. For fixed R,
we will integrate αw and derivate 1

w .∫
CR

αw

w
dw =

[
aw

w log a

]c+iR

c−iR

+

∫
CR

aw

w2 log a
dw. (12)

Since aw is bounded on the half plane σw < c, we can see that

∣∣∣∣∣
[

aw

w log a

]c+iR

c−iR

∣∣∣∣∣ =
∣∣∣∣∣ ac+iR

(c+ iR) log a
− ac−iR

(c− iR) log a

∣∣∣∣∣
≤

∣∣∣∣∣ ac+iR

(c+ iR) log a

∣∣∣∣∣+
∣∣∣∣∣ ac−iR

(c− iR) log a

∣∣∣∣∣
= 2

ac√
c2 +R2 log a

,

which goes to 0 as R goes to ∞. Now we show that the integral in (12) also goes to 0.∣∣∣∣∣
∫
CR

aw

w2 log a
dw

∣∣∣∣∣ ≤
∫
CR

ac

(c2 +R2) log a
dw

≤ πR
ac

(R− c)2 log a
,

which goes to 0 as R goes to ∞.
In conclusion, we have 1

2iπ

∫ c+i∞
c−i∞

αw

w dw = 1.

Case α < 1: In this case, for all σw > c, we have σw log(a) < c log(a) so that aσw > ac.
Hence, aw is bounded on the half plane {σw > c}.
Let CR be the right half circle centered in c and whose diameter is on [c− iR, c+ iR]. Since
c > 0, the curve consisting of CR end its diameter doesn’t contain any singularities of the
integrant.
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Hence, by the Residue Theorem∫
CR

αw

w
dw +

∫ c−iR

c+iR

aw

w
dw = 0.

By a similar argument, we can show that the first term goes to 0 as R goes to ∞.
In conclusion, we have 1

2iπ

∫ c+i∞
c−i∞

aw

w dw = 0 □

We can now prove the Perron Formula.

Proof. Suppose in the first place that σa < σ + c, so that f is absolutely convergent on the
vertical line of abscissa σ + c. Then we can write f as its series and invert the sum and the
integral:

1

2iπ

∫ c+∞

c−∞
f(s+ w)

xw

w
dw =

1

2iπ

∑
n≥1

an

∫ c+∞

c−∞
n−s−w x

w

w
dw (13)

=
1

2iπ

∑
n≥1

ann
−s

∫ c+∞

c−∞

(xn)
w

w
dw. (14)

We now need to show that the integral in (14) is equal to 1 if x < n and to 0 if x > n. This
is indeed the case because of our Lemma.
Now we suppose that σc < σ + c ≤ σa. Let α > σa − σ and consider the rectangle γR with
vertices c+ iT , α+ iT , α− iT , c− iT , for some T that will go to ∞.

By the Residue Theorem we have ∫
γR

f(s+ w)
xw

w
dw = 0.

Since the integrant has no poles besides 0, which is not inside the rectangle.
Now, on the right side of the rectangle, f converges absolutely, and we already treated that
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case. The left side is the integral we want to compute. To show that both integrals are equal,
we only need to show that the integrals of the green horizontal sides of the rectangle tend to
0 as T goes to ∞. This can be done by using the vertical growth of dirichlet series (9):

f(s+ w) = O((t+ ℑ(w))1−(σ+c−σ0)+ϵ)

which is a O(ℑ(w)γ) whith 0 < γ < 1. Hence f(s+ w)x
w

w = O(|ℑ(w)|γ−1), which shows that
the horizontal integrals converges to 0 as T goes to ∞.

In conclusion, the integral of the red sides are equal, and we have proven the Perron For-
mula in the general case. □

2.2 Example on the Zeta function

Recall the Mangoldt function Λ that we introduced in the beginning, and its associated
Dirichet series F = − ζ′

ζ . Because of the Perron formula, we know that

∑
n<x

Λ(n) =
1

2iπ

∫ 2+i∞

2−i∞
− ζ ′(w)

ζ(w)w
xwdw.

We gave the idea of how to evaluate such an integral in the introduction. The obtained error
term is not optimal, but it is a o(x), which is sufficient for the prime number theorem. Now
let us apply the same method to evaluate

∑
n<x 1.

We apply the Perron Formule to the Zeta function. We can take c = 1 + ϵ and s = 0, which
gives us:

∑
n<x

1 =
1

2iπ

∫ 1+ϵ+i∞

1+ϵ−i∞
ζ(w)

xw

w
dw. (15)

Now we cut the integral at c+ iT and c− iT , as in [Mur08], and we know the error term:∫ c+i∞

c−i∞

ζ(w)

w
xwdw =

∫ c+iT

c−iT

ζ(w)

w
xwdw +O

( ∞∑
n=1

(
x

n

)c

min

(
1, T−1

∣∣∣∣ log xn
∣∣∣∣−1))

.

The summation in the O-term corresponding to n < x/2 or n > 3x/2 is bounded by O
(

xc

T

)
,

and the summation corresponding to x/2 ⩽ n ⩽ 3x/2 is bounded by O
(

x
T log(x)2

)
.

To evalute the remaining integral, we consider the curve C consisting of the three segments
[c+ iT, 1/2+ iT ], [1/2+ iT, 1/2− iT ] and [1/2− iT, c− iT ]. By the residue Theorem we have∫ c+iT

c−iT

ζ(w)

w
xwdw = x−

∫
C

ζ(w)

w
xwdw.

To estimate the integral over C, we can use the estimate

ζ(s) = O(|t|1/2), for σ ⩾ 1/2 and when |t| → ∞.

We find that the integrals over the two honrizontal segments are O
(

xc

T 1/2

)
and that the

integral over the vertical segment is O
(
x1/2T 1/2 log(T )

)
.

After putting everything together we get
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∑
n<x

1 = x+O
(

xc

T 1/2

)
+O

(
x1/2T 1/2 log(T )

)
.

We can take T = x1/2 to make the error terms equal. In conclusion, we have the estimation∑
n<x

1 = x+O
(
x3/4+ϵ

)
.

We can observe that this method yields an error term which, although sufficient in the case
of the prime number theorem, is not satisfactory. We shall use a different approach to get a
better error term. The idea is to shift the integral of the Perron formula to the left to capture
the poles of the integrand.∫ c+i∞

c−i∞

ζ(w)

w
xwdw =

∫
C′

ζ(w)

w
xwdw +

∫ δ−c+i∞

δ−c−i∞

ζ(w)

w
xwdw. (16)

where C′ is a curve containing all the poles of the integrand. The first integral can be computed
explicitly by the Residue Theorem, and will give us the main term. For the second integral,
we will use the functional equation of ζ to put it back on the right. Then it can be estimated
and will give us an error term. In the next section, we are going to see the functional equation
of ζ.

3 Functional equation of ζ

3.1 The Gamma function

We define the Gamma function in the half complex plane for every σ > 0:

Γ(s) =

∫ ∞

0
e−xxs−1dx. (17)

The Gamma function has a central role in functional equations of Dirichlet series. Therefore,
the study of its analytical properties is essential. Each proofs of the following results are
detailed in [MV12] First of all, we shall extend Γ on the complex plane.

Theorem 2. Γ can be extended to a meromorphic function on the whole complex plane. It
has poles on every negative integers. If n is a negative integer, then its residue in s = n is
given by

Res
s=n

Γ(s) =
(−1)−n

(−n)!
.

.

We will now give two asymptotic results of the Gamma function. The first one is the
Stirling formula:

Theorem 3. (Stirling) We have

|Γ(x+ iy)| ∼ exp

(
− 1

2
π|y|

)
|y|x−

1
2

√
2π (18)

as y goes to ∞, uniformly in a vertical strip x1 ⩽ x ⩽ x2.

Theorem 4. For any α ∈ C and δ > 0,

log Γ(z + α) = (z + α− 1/2) log z − z +
1

2
log(2π) +O

(
1

|z|

)
(19)

as |y| → ∞, the implicit constant being uniform in −π + δ ⩽ arg(z) ⩽ π − δ.
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3.2 The Zeta function and L functions

It is time to look at some examples of Dirichlet series. Consider the sequence an = 1 and
the associated Dirichlet series. Because of the Riemann Criterion,, we now it has abcissa of
convergence (and also absolute convergence) σc = σa = 1, defining a holomorphic function on
the half plane σ > 1.

Definition 3.1. The function definied by

ζ(s) =
∑
n⩾1

n−s (20)

for σ > 1 is called the Riemann Zeta function.

It is known that this function can be extended to a meromorphic function with an unique
simple pole at s = 1, with residue 1. Moreover, ζ(s) is verifying the following functional
equation:

Theorem 5. (Functional equation of ζ) For all s ∈ C other than 0 and 1, we have

ζ(s)Γ

(
s

2

)
π−

s
2 = ζ(1− s)Γ

(
1− s

2

)
π−

1−s
2 . (21)

Remark. This last equation can be written in a simpler way by considering a slight variation
of the Zeta function ζ2(s) =

∑
n⩾1

1
n
√
π
. Hence, we can generalize the definition of Dirichlet

series by defining them as series of the form
∑

n⩾1 an/µn where (µn)n∈N is any increasing
sequence going to ∞.

Remark. The functional equation (21) has two points worth mentioning. First of all, there is
an axis of symmetry of abscissa 1/2. Secondly, there is the same Gamma function on both
sides.

We can now take a look at Dirichlet L-functions, which have very similar functional
equation.

Definition 3.2. For every k ∈ N∗, we define a Dirichlet Character mod k as being a morphism
χ from the multiplicative group (Z/kZ)∗ into C∗. Then, we can define a function χ̂ : Z → C
in the following way:

ˆχ(n) =

{
χ(n mod k) if (n, k) = 1
0 else

.

Without confusion we shall denote χ̂ as just χ. The set of charaters modulo k forms a group.
We denote χ0 the trivial element of this group, called the principal character, when there is
no ambiguity about k.

Remark. If χ is character modulo k, and if k′ is a multiple of k, then we can define a character
χ′ modulo k′ by

χ′(n) =

{
χ(n) if (n, k′) = 1
0 else

.

In this case we say that χ′ is induced by χ. If a character is not induced by another character
of inferior moduli we say it is primitive.

Definition 3.3. Let χ be a Dirichlet character, we define the associated L-function as the
Dirichlet series

L(χ, s) =
∑
n≥1

χ(n)

ns
.

13



Since χ is completely multiplicative, we can develop L(χ, s) into an Euler product.

Proposition 9. For every σ > 1,

L(χ, s) =
∏

p prime

(1− χ(p)p−s)−1.

Since |χ(n)| ≤ 1 for all n and all characters χ, the abscissa of absolute convergence is
always at most 1. The same can be said about the abscissa of convergence of L(χ0, s), the
L-function assiociated to the principal character. But we have more: using the Euler product,
we can write

L(χ0, s) =
∏

p prime
p∤k

(1− p−s)−1 = ζ(s)
∏
p∤k

(1− p−s).

Hence, we see that L(χ0, s) can be extended to an analytical function over the complex plane,
with an unique simple pole at s = 1. Furthermore, the residue of this pole can be computed
and is equal to ϕ(k)

k .

If χ ̸= χ0, then the oscillations of χ are sufficiently large to show that the sum
∑

n<x χ(n) is
bounded for all x. This is enough to show that

Proposition 10. If χ ̸= χ0 is a character modulo k, then L(χ, s) converges for all σ > 0 and
defines an analytic function.

Proof. Let S(n) =
∑
k⩽n

χ(k) for all n ∈ N. We apply an Abel transform for N > M :

∣∣∣∣∣
N∑

n=M

χ(n)

ns

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑
n=M

S(n)

(
1

ns
− 1

(n+ 1)s

)
+
S(N)

N s
− S(M − 1)

M s

∣∣∣∣∣
⩽ C

(
1

M s
− 1

N s

)
+

C
N s

+
C
M s

.

If σ > 0, the left hand side can be arbitrarily small by choosing adequately M . Hence, by the
Cauchy criterion, the series converges. □

Dirichlet L-functions can be extended to meromorphic functions on the whole complex plane.
The proof is very similar to the one for the Zeta function.

Theorem 6. Let χ be a primitive character. Then L(χ, s) can be extended to a meromorphic
function. If χ(−1) = 1, we have the following functional equation:(

π

k

)− 1
2
(1−s)

Γ

(
1− s

2

)
L(χ̄, 1− s) =

k1/2

τ(χ)

(
π

k

)− s
2

Γ

(
s

2

)
L(χ, s). (22)

Where τ(χ) =
∑k

m=1 χ(m)e
2iπm

k .

If χ(−1) = −1, we have(
π

k

)− 2−s
2

Γ

(
2− s

2

)
L(χ̄, 1− s) =

ik1/2

τ(χ)

(
π

k

)− s+1
2

Γ

(
s+ 1

2

)
L(χ, s). (23)

We shall give the main idea of the proof, without going too deep into details. A detailed
proof is given in [Mun13].
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Proof. Suppose χ(−1) = 1. For every integer n we have(
k

π

)s/2

Γ

(
s

2

)
n−s =

(
k

π

)s/2(∫ ∞

0
e−xx

s
2
−1dx

)
n−s

=

∫ ∞

0
e−x

(
kx

πn2

)s/2dx

x

=

∫ ∞

0
e−

πn2x
k xs/2

dx

x
.

To obtain the last line, we changed the variable by a dilatation of πn2

k .
Now we can take the sum over n(

k

π

)s/2

Γ

(
s

2

)
L(χ, s) =

∫ ∞

0
xs/2−1

∑
n≥1

χ(n)e−
πn2x

k dx

=

∫ ∞

1
xs/2−1

∑
n≥1

χ(n)e−
πn2x

k dx+

∫ 1

0
xs/2−1

∑
n≥1

χ(n)e−
πn2x

k dx

=

∫ ∞

1
xs/2−1

∑
n≥1

χ(n)e−
πn2x

k dx+

∫ ∞

1
x−s/2−1

∑
n≥1

χ(n)e−
πn2

kx dx.

Put θ(x) =
∑

n≥1 χ(n)e
−πn2x

k . By the Poisson formula, we can get a functional equation
verified by θ, and thus deduce the functional equation for L(χ, s):

τ(χ̄)θ(χ, x) =

(
k

x

)1/2

θ(χ̄, 1/x)

for all x > 0.
Using this functional equation in the second integral above gives us(

k

π

)s/2

Γ

(
s

2

)
L(χ, s) =

∫ ∞

1
xs/2−1θ(χ, x)dx+

k1/2

τ(χ̄)

∫ ∞

1
x−s/2−1/2θ(χ̄, x)dx. (24)

And by replacing s by 1− s and χ by χ̄,(
k

π

)s/2

Γ

(
s

2

)
L(χ̄, 1− s) =

∫ ∞

1
x−s/2−1/2θ(χ̄, x)dx+

k1/2

τ(χ)

∫ ∞

1
xs/2−1θ(χ, x)dx. (25)

Moreover, it can be shown that |τ(χ)| = k1/2, so that equation (25) is just (24) multiplied by
k1/2

τ(χ) . This leads us to the functional equation (22).

Now if χ(−1) = −1, we follow the same arguments but with some slight modifications. First
of all we note that for all n,(

k

π

)1+s/2

Γ

(
1 + s

2

)
L(χ, s) =

∫ ∞

0

(∑
n⩾0

nχ(n)e−
−πn2x

k

)
x(s−1)/2dx.

Then put θ(x) =
∑

n⩾1 nχ(n)e
−πn2x

k . Again, we can use the Poisson formula to get a func-
tional equation for θ:

τ(χ̄)θ(χ, x) = ik1/2x−3/2θ(χ̄, 1/x).

And deduce from this the functional equation for L(χ, s). □
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4 The main O-Theorem

Our goal is to study the sum of the first coefficients of a Dirichlet series. We will see during
the proof of our main theorem that, in order to assure the convergence of some integrals, we
need to add some weights to the coefficients. In section 4.1 we will talk about the Cesàro
weights. Once we get the estimate for the Cesàro weights, we need to reduce the weights.
This can be done by applying some operator, that will be the subject of section 4.2.

4.1 Cesàro weights

For every k ∈ N, put

Ak(x) =
1

Γ(k + 1)

∑
n⩽x

an(x− n)k. (26)

Note that A0(x) is just the sum
∑

n⩽x an. We have a result similar to the Perron Formula
propositionLet x ∈ R+\N and c > 0. We also suppose that σ > σc − c. Then

Ak(x) =
1

2iπ

∫ c+i∞

c−i∞

Γ(s)f(s)

Γ(s+ k + 1)
xs+kds. (27)

Proof. The proof is very similar to the proof of the Perron Formula. In the right hand side
of (27), we espand f as its Dirichlet series and invert the integral and the sum.

∞∑
n=1

an

∫ c+i∞

c−i∞

Γ(s)

Γ(s+ k + 1)ns
xs+kds.

Take the nth term of the sum, and put α = x/n

anx
k

∫ c+i∞

c−i∞

Γ(s)

Γ(s+ k + 1)
αsds. (28)

If α > 1, then the integral is equal to 0 by considering the left half circle centered in c and
with radius R, as in the proof of Perron’s formula. There are no poles in this circle, so the
integral is equal to 0.

If α < 1, we consider CR the right half circle centered in c and with radius R. If R is
sufficently large, this circle contains all the poles of the integrant, which are all integers in
]− k − 1, 0].
It can be shown that the integral is equal to the sum on the residues. Since all the poles are
of order 1, the residues can easily be computed. Let l be an integer in [0, k+1[, so that −l is
a pole of the integrant, then

Res
s=−l

(
Γ(s)

Γ(s+ k + 1)
αs) = lim

s→−l
(s+ l)

Γ(s)

Γ(s+ k + 1)
αs

=
α−l

Γ(−l + k + 1)
lim
s→−l

(s− l)Γ(s)

=
α−l

Γ(−l + k + 1)

(−1)l

l!

=
1

Γ(k + 1)αk

Γ(k + 1)

Γ(k + 1− l)l!
αk−l(−1)l
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Hence (28) is equal to the sum

anx
k 1

Γ(k + 1)αk

⌈k+1⌉−1∑
l=0

Γ(k + 1)

Γ(k + 1− l)l!
αk−l(−1)l

We recognize a generalized binomial formula, giving us

anx
k 1

Γ(k + 1)αk
(α− 1)k

After some simplifications, we finally get
an

Γ(k + 1)
(x− n)k

which correspond to the general term of the sum in (26). □

4.2 The operator ∆ρ
y

In this section we shall introduce a very useful operator for our theorem. We start by giving
a very analytic definition.

Definition 4.1. Let ρ be an integer and F a function of class Cρ. For every y > 0, we define
the finite difference by

∆ρ
yF (x) =

∫ x+y

x

∫ t1+y

t1

∫ t2+y

t2

...

∫ tρ−1+y

tρ−1

F (ρ)(tρ)dtρdtρ−1 · · · dt1. (29)

Remark. ∆0
y is the trivial operator and ∆1

yF (x) = F (y)− F (x).
Hence we see that ∆1

y acts like a discrete derivation.

Of course, because of the linear nature of the integral and the derivative, it is not difficult
to show that

Proposition 11. The operator ∆ρ
y is linear.

It is interesting to note that this operator has also a more arithmetical definition.

Proposition 12. We have

∆ρ
yF (x) =

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

)
F (x+ νy). (30)

Proof. We will proceed by induction. The case ρ = 0 is trivial. Let us suppose that (30) is
true for some ρ.

∆ρ+1
y F (x) =

∫ x+y

x

∫ t1+y

t1

∫ t2+y

t2

...

∫ tρ+y

tρ−1

F (ρ+1)(x)dtρ+1dtρ...dt1

=

∫ x+y

x

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

)
F ′(t1 + νy)dt1

=

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

)(
F (x+ (ν + 1)y)− F (x+ νy)

)

=

ρ+1∑
ν=1

(−1)ρ−ν−1

(
ρ

ν − 1

)
F (x+ νy) +

ρ∑
ν=0

(−1)ρ−ν−1

(
ρ

ν

)
F (x+ νy)

=

ρ+1∑
ν=0

(−1)ρ−ν+1

(
ρ+ 1

ν

)
F (x+ νy).

Hence the proposition is true for all integer ρ. □
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Remark. This last definition is more general than the first one, since it covers all functions, and
not just functions of class Cρ. However, we will only be dealing with holomorphic functions,
therfore both definitions can be considered as equivalent.

The next proposition shows how the ∆ρ
y operator enable us to reduce the weigths.

Proposition 13. For every integer ρ and y > 0

∆ρ
yAρ(x) = A0(x)y

ρ +O
(
yρ

∑
x<λn<x+ρy

|an|
)
. (31)

Proof. We start by splitting the sum and applying the linear proprety of the ∆ operator.

∆ρ
yAρ(x) = ∆ρ

y

( ∑
λn<x

an
(x− λn)

ρ

Γ(ρ+ 1)

)

=

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

) ∑
λn<x+νy

an
(x+ νy − λn)

ρ

Γ(ρ+ 1)

=
∑
λn<x

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

)
an

(x+ νy − λn)
ρ

Γ(ρ+ 1)
+

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

) ∑
x<λn<x+νy

an
(x+ νy − λn)

ρ

Γ(ρ+ 1)

=
∑
λn<x

an
∆ρ

y(x− λn)
ρ

Γ(ρ+ 1)
+

ρ∑
ν=0

(−1)ρ−ν

(
ρ

ν

) ∑
x<λn<x+νy

an
(x+ νy − λn)

ρ

Γ(ρ+ 1)
.

Then, since the ρth derivative of (x− λn)
ρ is Γ(ρ+ 1), it is easy to see

∆ρ
y(x−λn)ρ

Γ(ρ+1) = yρ.

Furthermore, the dominant term in the second sum is when ν = ρ. This term is aO
(∑

x<λn<x+ρy)|an|yρ
)
.

This is exactly the O term in (31). □

This proposition is very interesting, because it shows that in order estimate the sum of the
first coefficients of a Dirichlet series, we can estimate any Cesaro weight Aρ and then apply
the operator ∆ρ

y. This will be the general idea of the proof of our main O Theorem.
Finally, we shall give the behavior of ∆ρ

yF (x) for some function F .

Proposition 14. Let F be a function of class C∞, and suppose that F (x) = O(xα) and that
F (ρ)(x) = O(xβ). We also suppose that y = O(x). Then

∆ρ
yF (x) =

{
O(xα)

O(yρxβ)
. (32)

Proof. To get the first term we use equation (30). Since the sum is finite and
F (x+ νy) = O((x+ νy)α) = O(xα), we have ∆ρ

yF (x) = O(xα).
On the other hand, we can give an estimate for ∆ρ

y by using equation (29). Indeed, the
integrand is dominated by (x + ρy)β, which has same order as xβ since y = O(x). Since we
take the integrals over segments of lengths y, the result is dominated by yρxβ. □

4.3 Capturing the poles

Let ϕ be a Dirichlet series, we shall denote

Q0(x) =
1

2iπ

∫
C

ϕ(s)

s
xsds,
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where C is a curve which encloses all the poles of the integrand. Note that Q0(x) correspond
to the first term on the right hand side of (16). It is the integral that we get when we shift
the line of integration in the Perron formula.
Since we will be dealing with more general Cesaro weights, we shall consider the following
definition:

Definition 4.2. For every integer ρ, let

Qρ(x) =
1

2iπ

∫
Cρ

Γ(s)ϕ(s)

Γ(s+ ρ+ 1)
xs+ρds, (33)

where Cρ is a curve containing all the poles of the integrant.

Because of the Residue Theorem, we can compute the value of Q0(x) with the residues of
the integrand. This is done in the folowing proposition.

Proposition 15. For every pole ξ of ϕ(s)
s xs, we have

Res
s=ξ

(
ϕ(s)

s
xs
)

≍ xℜ(ξ)log(x)rξ−1 (34)

where rξ is the order of the pole.

Proof. Let’s develop ϕ, xs and 1
s into their Laurent expansion:

• ϕ(s) =
∑

n⩾−rξ
an(s− ξ)n

• xs = xξ
∑

n⩾0
1
n!(s− ξ)nlog(x)n

• 1
s =

∑
n⩾0 cn(s− ξ)n

Using Theorem 5, we can compute the residue of the product at ξ:

Res
s=ξ

(
ϕ(s)

s
xs
)

= xξ
∑

k+l+m=−1

ak
l!
log(x)lcm. (35)

The biggest term in this sum is when k = −rξ, l = rξ − 1 and m = 0. Since coefficients an

and cn only depends of ϕ, we conclude that Resξ(
ϕ(s)
s xs) ≍ xℜ(ξ)log(x)rξ−1. □

In conclusion we have a good estimate for Q0:

Q0(x) ≍
∑
ξ

xℜ(ξ)log(x)rξ−1. (36)

Since the ρth derivative of Qρ is Q0, we have by definition

∆ρ
yQρ(x) =

∫ x+y

x

∫ t1+y

t1

...

∫ tρ−1+y

tρ−1

Q0(tρ)dtρ...dt1 (37)

This gives us a relation between Qρ and Q0.

Proposition 16. Assume y = O(x), then

∆ρ
yQρ(x) = Q0(x)y

ρ +O
(
xq−1(logr−1x)yρ+1

)
. (38)

where q is the largest real part of a pole with greatest real part, and r is the maximum order
of a pole of real part q.
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Proof. We start by writing Q0(tρ) = Q0(x) +
∫ tρ
x Q′

0(s)ds.

Note that Q′
0(s) ≍

∑
ξ

(
qsq−1logr−1s+ sq−1(r − 1)logr−2s

)
≍ sq−1logr−1s.

By putting this into (37)

∆ρ
yQρ(x) = Q0(x)y

ρ +O
(∫ x+y

x

∫ t1+y

t1

...

∫ tρ−1+y

tρ−1

∫ tρ

x
sq−1 logr−1(s)dsdtρ...dt1

)
.

The integrant in the O-term is smaller than (x+ yρ)q−1 logr−1(x+ yρ). Since y = O
(
x
)
, this

has the same order of magnitude as xq−1 logr−1(x). After taking ρ+1 integrals over segments
of lenghts smaller than yρ, we finally get the O-term in equation (16). □

4.4 The main theorem

We will now consider two general Dirichlet series ϕ(s) =
∑

n≥1
an
λs
n
and ψ(s) =

∑
n≥1

bn
µs
n
, where

(λn) and (µn) are two increasing sequences of real numbers going to ∞. We also assume that
they satisfy the following functional equation:

∆(s)ϕ(s) = ∆(δ − s)ψ(δ − s) (39)

where ∆(s) =
∏N

ν=1 Γ(ανs+ βν) is a product of gamma functions with αν ∈ R and βν ∈ C. δ
is a positive real number.
Before giving the main Theorem, we shall introduce the following notations:

• A =
∑

ν αν .

• β ∈ R is such that ψ(β) converges absolutely.

• q is the real part of the pole of ϕ with gratest real part.

• r is the maximum order of the poles with real part q.

• t ⩽ 1/2 is such that t
2A < 1 and there exist an integer n such that 0 < {n+Aδ

2A } ⩽ 1− t
2A .

• u = β − δ/2− t/2A .

The following Theorem was proven by Chandrasekharan and Narasimhan in their article [CN62].

Theorem 7. Suppose that all the singularities of ϕ, as defined above, are poles and that there
is a finite number of them. Assume also that A > 0, then we have∑

n<x

an −Q0(x) = O
(
xδ/2−t/2A+2Aηu

)
+O

(
xq−1/2A−ηlogr−1x

)
+O

( ∑
x<n<x′

|an|
)

where η ⩾ 0 and x′ = x+O
(
x1−η−1/2A

)
.

Chandrasekharan and Narasimhan treated the case A ⩾ 1, where t can awlays be chosen
to be 1/2. We propose this generalization for the case where A > 0. We shall prove this
Theorem in three steps. First of all, we will write Aρ(x)−Qρ(x) as a sum

∑
n⩾1

bn
νδ+ρ
n

I(xvn),

where I is a function defined by an integral. Secondly, we will give an estimate for this
function I and for I(ρ). This estimate will give us the first O-term. Finally, we shall use our
operator ∆ρ

y to deduce a formula for A0 and Q0. This operation will cost us the two ther
O-terms.
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4.4.1 Evaluating Aρ −Qρ

For ρ ⩾ 0, Let

Aρ(x) =
1

Γ(ρ+ 1)

∑
λn⩽x

an(x− λn)
ρ.

For c sufficiently large, that we may fix later, we have

Aρ(x) =
1

2iπ

∫ c+i∞

c−i∞

Γ(s)ϕ(s)

Γ(s+ ρ+ 1)
xs+ρds.

If c is large enough, we may also assume that all the poles of the integrant are in the strip
δ − c < σ < c. Hence, because of the Residue Theorem, we have

1

2iπ

∫
TR

Γ(s)ϕ(s)

Γ(s+ ρ+ 1)
xs+ρds = Qρ(x) (40)

where TR is the rectangle with vertices at c± iR and δ − c± iR, and

Qρ =
1

2iπ

∫
Cρ

Γ(s)ϕ(s)

Γ(s+ ρ+ 1)
xs+ρds

where Cρ encloses the same singularities as the strip δ − c < σ < c.
In equation (40), we can let R go to ∞ to get

Aρ(x)−Qρ(x) =
1

2iπ

∫ δ−c+i∞

δ−c−i∞

Γ(s)ϕ(s)

Γ(s+ ρ+ 1)
xs+ρds.

Now we can change the variable with s′ = δ − s and then apply functional equation (39):

Aρ(x)−Qρ(x) =
1

2iπ

∫ c+i∞

c−i∞

Γ(δ − s)∆(s)ψ(s)

Γ(δ − s+ ρ+ 1)∆(δ − s)
xδ−s+ρds. (41)

Now put

I(x) =
1

2iπ

∫ c+i∞

c−i∞

Γ(δ − s)∆(s)

Γ(δ − s+ ρ+ 1)∆(δ − s)
xδ−s+ρds, (42)

so that

Aρ(x)−Qρ(x) =
1

2iπ

∫ c+i∞

c−i∞

Γ(δ − s)∆(s)

Γ(δ − s+ ρ+ 1)∆(δ − s)
xδ−s+ρ

∑
n⩾1

bn
µsn

(43)

=
1

2iπ

∑
n⩾1

bn

µδ+ρ
n

∫ c+i∞

c−i∞

Γ(δ − s)∆(s)

Γ(δ − s+ ρ+ 1)∆(δ − s)
(xµn)

δ−s+ρ (44)

=
1

2iπ

∑
n⩾1

bn

µδ+ρ
n

I(xµn). (45)

To assure the convergence of the integral in (41), we need to study the asymptotic behavior
of the integrand. This can be done by using the Stirling formula (18).
The integral converges if and only if

2Ac−Aδ < ρ. (46)

Thus, by chosing ρ sufficiently large, the previous calculations are justified.
Moreover, to justify (45), we also need to take ρ sufficiently large. In the next we will study
the asymptotic behavior of I to find the lower bound of ρ and also to estimate Aρ −Qρ.
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4.4.2 Estimate for I(x) and I(ρ)(x)

We shall now study the asymptotic behavior of the integrand in (42). In order to do that, we
will first take the log of the integrant and apply (19). We get

logG(s)− log

(
Γ(As+ µ)

Γ(λ−As)
eΘs

)
= B +O

(
1

|s|

)
. (47)

Where

G(s) =
Γ(δ − s)∆(s)

Γ(ρ+ 1 + δ − s)∆(δ − s)
,

µ = 1/2 +

N∑
ν=1

(βµ − 1/2),

λ = µ+Aδ + ρ+ 1,

Θ = 2(
N∑
ν=1

αν log(αν)−A logA),

B = −δ
N∑
ν=1

αν logαν + (Aδ + ρ+ 1) logA.

Now take the exponential on boh sides:

G(s) = H(s)e
O( 1

|s| )

where H(s) = Γ(As+µ)
Γ(λ−As)e

B+Θs.

Finally, by subtracting H(s) on both sides and using e
O( 1

|s| ) − 1 = O
(

1
|s|

)
, we get

G(s)−H(s) = H(s)O
(

1

|s|

)
.

Now we can write I(x) by using the new function H.

I(x) =
1

2iπ

∫ c+i∞

c−i∞
G(s)xδ+ρ−sds

=
1

2iπ

∫ c+i∞

c−i∞

{
H(s)O

(
1

|s|

)}
xδ+ρ−sds+

∫ c+i∞

c−i∞
H(s)xδ+ρ−sds.

The second integral can be computed explicitely by using Bessel functions:

1

2iπ

∫ c+i∞

c−i∞
H(s)xδ+ρ−sds = C(y1/(2A))Aδ+(2A−1)ρJ2µ+Aδ+ρ(2y

1/(2A))

where J is the Bessel function.
Thus, by using the asymptotic behavior of J , which is of order x−1/2, we conclude that∣∣∣∣∣

∫ c+i∞

c−i∞
H(s)xδ+ρ−sds

∣∣∣∣∣ = O
(
xδ/2+(1−1/(2A))ρ− 1

4A

)
.

On the other hand, we can shift the line of integration of the first integral until we hit a pole.
The poles of the integrant are the δ + k where k is a positive integer. Hence, by shifting the
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integral to the right, the first pole we will hit is δ+ νρ where νρ is the smallest integer bigger

than ρ−Aδ
2A . By hypothesis, we can choose ρ so that νρ ≥ ρ−Aδ+t

2A .
Thus we have∫ c+i∞

c−i∞

{
H(s)O

(
1

|s|

)}
xδ+ρ−sds =

∫ c+t/(2A)+i∞

c+t/(2A)−i∞

{
H(s)O

(
1

|s|

)}
xδ+ρ−sds

= O
(
x(Aδ+(2A−1)ρ−t)/2A

)
.

In conclusion:

I(x) = O
(
x(Aδ+(2A−1)ρ−t)/2A

)
. (48)

At this point we are able to establish that for (45) to hold, we need to have

ρ ⩾ 2Aβ −Aδ − t.

ρ can be chosen arbitrarely large, so this is not a problem. Furthermore, this also shows that
we can’t have δ/2 + t/(2A) ≥ β, because then (45) would be true for ρ = 0, which is clearly
not the case since A0(x) is not continuous. Hence, we have

β − δ/2− t/(2A) > 0. (49)

To get an estimate for I(ρ)(x), we need to derive (42). However, this is not always possible
because the abscissa of convergence c has to verify (46). Hence, we shall first shift the line of
integration, in order to later derive inside the integral. We shift the vertical line to a curve
consisting of the lines c0 + it with |t| > R , and the three sides of the rectangle with vertices
c0−iR,c0+iR,C0+r+iR and c0+r−iR, for some R and some r and with c0 =

δ
2 . During the

shift, we have to be careful to not cross any poles. This can be done by chosing adequately
R and r.

In the image, we shift the blue vertical line to the red one, by taking care to not pass by any
red cross, which are the singularities of the integrant.
After derivating inside the integral we have

I(ρ)(x) =
1

2iπ

∫
C
G(s)xδ−sds.

We can now use the same method we used to estimate I(x) to get the estimation:

I(ρ)(x) = O
(
xδ/2−

t
2A

)
. (50)

23



4.4.3 Reducing the weights

The last step consists at applying the operator ∆ρ
y on both sides of (45) to get a result for A0

and Q0. By the linearity of the operator, we get

∆ρ
yAρ(x)−∆ρ

yQρ(x) =
1

2iπ

∑
n⩾1

bn

νδ+ρ
n

∆ρ
yI(xνn). (51)

Because of (38) and (31), we have

yρ
[
A0(x)−Q0(x)

]
+O

(
xq−1logr−1xyρ+1

)
+O

(
yρ

∑
x<λn<x+ρy

|an|
)

=
1

2iπ

∑
n⩾1

bn

µδ+ρ
n

∆ρ
yI(xµn).

Now we shall give the behavior of the right hand side. We can use (32) to give an estimate of
∆ρ

yI(xµn).

∆ρ
yI(xµn) =

{
O((xµn)

δ/2−t/(2A)+ρ(1−1/(2A)))

O(yρxδ/2−t/(2A)µ
δ/2−t/(2A)+ρ
n )

.

For some z ∈ R that we might fix later, we can split the sum on the right hand side:

1

2iπ

∑
n⩾1

bn

µδ+ρ
n

∆ρ
yI(xµn) =

1

2iπ

∑
µn⩽z

bn

µδ+ρ
n

∆ρ
yI(xµn) +

∑
µn>z

bn

µδ+ρ
n

∆ρ
yI(xµn)

= O
(∑

µn⩽z

|bn|
µ
δ/2+t/(2A)
n

yρxδ/2−t/(2A)

)
+O

(∑
µn>z

|bn|
µ
δ/2+ρ/(2A)+t/(2A)
n

xδ/2−t/(2A)+ρ(1−1/(2A))

)
.

Moreover, we know that δ/2+ t/(2A) < β by (49), and since ρ can be chosen to be arbitrarily
large, we may also assume that δ/2 + t/(2A) + ρ/(2A) > β. Hence, on the one hand we have∑

µn>z

|bn|
µ
δ/2+t/(2A)+ρ/(2A)
n

=
∑
µn>z

|bn|
µ
δ/2+t/(2A)+ρ/(2A)−β
n µβn

⩽ zβ−δ/2−t/(2A)−ρ/(2A)
∑
µn>z

|bn|
µβn

= O
(
zβ−δ/2−t/(2A)−ρ/(2A)

)
,

while on the other hand

∑
µn⩽z

|bn|
µ
δ/2+t/(2A)
n

=
∑
µn⩽z

|bn|µβ−δ/2−t/(2A)
n

µβn
⩽ zβ−δ/2−t/(2A)

∑
µn⩽z

|bn|
µβn

= O
(
zβ−δ/2−t/(2A)

)
.

Thus we conclude that:

1

2iπ

∑
n⩾1

|bn|
µδ+ρ
n

∆ρ
yI(xµn) = O

(
yρxδ/2−t/(2A)zu

)
+O

(
xδ/2−t/(2A)+ρ(1−1/(2A))zu−ρ/(2A)

)
where u = β − δ/2− 1/(4A). Now we have to make a compromise between the two O-terms.
We still have a choice to make for y and z. We can start by setting

z =
x2A−1

y2A
.
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Which gives us

1

2iπ

∑
n⩾1

bn

µδ+ρ
n

∆ρ
yI(xµn) = O

(
yρ−2Auxδ/2−t/(2A)+(2A−1)u

)
.

Putting this into (51) and using (38) and (31) we get

A0(x)−Q(x) =O(y−2Auxδ/2−t/2A+(2A−1)u)

+O(yxq−1 logr−1 x)

+O(
∑

x<λn⩽x+ρy

|an|).

And put
y = x1−1/(2A)−η

in order to simplify the first O-term. We keep the choice of η > 0 open. In some cases, η
could be chosen to optimize the three O-terms. □

4.5 Dirichlet series with positive coefficients

In a lot of cases the coefficients of a Dirichlet series are positive. This is the case for ζ or for∑ d(n)
ns . The function A0(x) is therefore monotone, and thus we can get a better estimate.

Theorem 8. Under the same conditions as in Theorem 7, and with the additional condition
that an ⩾ 0 for all n ⩾ 1, we have

A0(x)−Q0(x) = O
(
xδ/2−t/(2A)+2Aηu

)
+O

(
xq−1/(2A)−η log(x)r−1

)
. (52)

Recall that Q0(x) ≍ xq log(x)r−1. Hence, we can observe in the second O-term that we
gain 1/(2A) compared to the main term.

Proof. Since A0(x) is monotone, we have for all t ∈ [x, x+ ρy]

A0(x) ⩽ A0(t) ⩽ A0(x+ ρy)

so that, after taking the integral

yρA0(x) ⩽ ∆ρ
yAρ(x) ⩽ yρA0(x+ ρy)

Now divide by yρ and substract Q0(x):

A0(x)−Q0(x) ⩽ y−ρ∆ρ
yAρ(x)− y−ρ∆ρ

yQρ(x) +O
(
xq−1 log(x)r−1y

)
= O

(
xδ/2−1/(4A)+2Aηu

)
+O

(
xq−1/(2A)−η log(x)r−1

)
⩽ A0(x+ ρy)−Q0(x).

Furthermore, we can see that

Q0(x+ ρy)−Q0(x) = O
(
xq−1y log(x)r−1

)
,
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which is just a O
(
xq−1/(2A)−η log(x)r−1

)
by taking y = O

(
x1−1/(2A)−η

)
.

Thus we have the proper bounding to conclude

A0(x)−Q0(x) = O
(
xδ/2−t/(2A)+2Aηu

)
+O

(
xq−1/(2A)−η log(x)r−1

)
.□

If two Dirichlet series ϕ and ψ satisfy all the conditions of Theorem 8, and if the greatest
order of a pole with greatest real part of ϕ is 1, then we can take

η =
t+ 2Aq −Aδ − 1

4A2u+ 2A

to make the two O-terms equal. In this cas, we have

A0(x)−Q0(x) = O
(
x
q−1/(2A)− t+2Aq−Aδ−1

4A2u+2A

)
.

In their article, ChandraseKharan and Narasimhan presented the case where A ≥ 1, and thus
t = 1/2. We can now take a look at some examples where A = 1/2, as for ζ or L-functions.

4.6 Some examples

The Zeta function satisfies (39) and has positive coefficients. In order to apply Theorem 8,
we should take ϕ(s) = ψ(s) = π−s/2ζ(s).
The parameters are δ = 1, A = 1/2, q = 1 and r = 1. For every integer n, {n−Aδ

2A } = 1/2,
hence we can take t = 1/2. For β we can take 1 + ϵ, so that u = ϵ, and

A0(x)−Q0(x) = O
(
xηϵ

)
+O

(
x−η

)
.

Hence, with η = 0
A0(x)−Q0(x) = O

(
1
)
.

Of course, A0(x) is just a sum of 1’s, and is therefore equal to [xπ−1/2]. On the other hand,
π−s/2ζ(s) has only a simple pole at s = 1, hence Q0(x) = π−1/2x. So we find what we would
expect.

Let χ be a primitive, non trivial character modulo k. We have seen that the L-functions
L(χ, s) and L(χ̄, s) are related by equation (22). We can apply Theorem 7 with ϕ(s) =
k1/2

τ(χ)(
π
k )

−s/2L(χ, s) and ψ(s) = (πk )
−s/2L(χ̄, s). The parameters are the same as for the Zêta

function, and we also get

A0(x)−Q0(x) = O
(
1
)
.

Here we have

A0(x) =
k1/2

τ(χ)

∑
n(π

k
)1/2<x

χ(n),

and since L(χ, s) has no poles, Q0(x) is a constant. Hence we conclude that∑
n<x

χ(n) = O
(
1
)
.
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Which corresponds to what we should find.
We now give an example of a less trivial problem. We want to give an estimation of the sum∑

n<x d(n). We can start by giving a simple estimation by writing

∑
n<x

d(n) =
∑
n<x

∑
ab=n

1 =
∑
a<x

[x/n] =
∑
a<x

(
x/n+O

(
1
))

= x log(x) +O
(
x
)
.

Now we apply Theorem 8 to see what error term we obtain. The main term is given by

Q0(x) =

∫
C

ζ(s)2

s
xsds,

where C is a curve containing the poles of the integrand, which are 1 and 0. The residue at 0
is a constant. For the residue at 1, we can write the following Laurent expansions:

• ζ(s)2 = 1
(s−1)2

+ 2γ
s−1 + . . .

• xs = x+ x log(x)(s− 1) + . . .

• 1
s = 1− (s− 1) + . . .

for |s− 1| < 1, and where γ is the Euler constant.
Hence the residue of the integrand at s = 1 is x log(x) + (2γ − 1)x. Moreover, ζ2 satisfies

π−sΓ2

(
s

2

)
ζ2(s) = π−(1−s)Γ2

(
1− s

2

)
ζ2(1− s).

We are now able to apply Theorem 8 with A = 1, q = 1, r = 2, δ = 1, β = 1+ ϵ and we might
choose η = 1/6. We conclude that∑

n<x

d(n) = x log(x) + x(2γ − 1) +O
(
x1/3+ϵ

)
.

The smallest value of θ such that
∑

n<x d(n) = x log(x) + x(2γ − 1)+O
(
xθ+ϵ

)
for all ϵ > 0 is

still unknown, but it is conjectured to be 1/4. This problem is the Dirichlet divisor problem.
Here we have shown that θ ⩽ 1/3.
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