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Abstract. We prove a joint value equidistribution statement for Hecke-Maaß cusp
forms on the hyperbolic three-space H3. This supports the conjectural statistical inde-
pendence of orthogonal cusp forms.

1. Introduction

1.1. Value distribution conjecture. The value distribution of eigenfunctions in the
semiclassical limit is one of the main problems in analytic number theory and quantum
chaos. Berry [Ber77] suggested that eigenfunctions of the Laplace operator for chaotic
systems are modeled by random waves: in particular, eigenfunctions on a compact hyper-
bolic surface should have a Gaussian value distribution when the frequency grows, and the
moments of an L2-normalized eigenfunction should be given by the Gaussian moments.
Such a behavior is analogously expected from automorphic forms on more general locally
symmetric spaces, see [Hum18]. This conjectural behavior, called the Gaussian Moment
conjecture, encapsulates the Quantum Unique Ergodicity conjecture.

This article considers the joint value distribution of Hecke-Maaß cusp forms on the
hyperbolic 3-space H3, analogously to the recent results of Huang [Hua24, HHL24] for
the hyperbolic plane H2. In the case of the hyperbolic 3-space, we have the following
conjecture (analogue of [Hua24, Conjecture 1.6]):

Conjecture 1.1. Let Γ be an arithmetic subgroup of PSL2(C). Let Ω be a fixed compact
set of Γ\H3 such that its boundary ∂Ω is of measure zero. Let f and g be two Hecke-Maaß
forms such that 〈f, g〉 = 0. Then, for any positive integer a, we have∫

Ω

faḡadµ(z) = o(1), (1)

as the corresponding eigenvalues tend to infinity.

Even though this conjecture is out of reach by current methods, it can be proven for
low moments and we may therefore be interested in the limiting behavior of∫

Ω

f 2g or
∫
H3

ψf 2g, (2)

where ψ is a smooth compactly supported function. The following theorem is the main
result of this paper and a smoothed analogue of the joint value equidistribution conjecture;
it is analogous to [HHL24, Theorem 1.4] in the case of the Poincaré upper-half plane H2.

Theorem 1.2. Let f and g be two Hecke-Maaß cusp forms. Assume the Generalized
Lindelöf Hypothesis. We have, for all ψ ∈ C∞c (Γ\H3), as tf →∞,

〈ψ, f 2g〉 = 〈ψ, g〉1tf>tg−tεg +Oψ(tf t
1/2
g )−1+ε. (3)
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Remark 1.3. A careful study of the arguments in the proof of Theorem 1.2 shows that it is
sufficient to assume, instead of the Generalized Lindelöf Hypothesis, a strong subconvex
bound of the form L(s, f) � c(f)1/8−δ for a δ > 0, for the L-functions occurring (which
can be of degree up to 16). We refer to further remarks at the end of the proof concerning
more general number fields and the level aspect analogue.

2. Statement and tools

We introduce in this section the notations used in this article as well as the tools and
results that will be invoked throughout the paper for easier reference. Part of this section
might be skipped in a first reading and referred to when necessary.

2.1. Hyperbolic 3-space and automorphic forms. We recall the theory of the hy-
perbolic 3-space, for which a good reference is [EGM98]. Let

H3 := {P = z + rj : z ∈ C, j > 0} (4)

be the hyperbolic 3-space which we consider as a subset of Hamilton’s quaternions with
the standard R-basis (1, i, j, k). The 3-space H3 is equipped with the hyperbolic metric.
The corresponding volume element is given by

dv = dv(P ) =
dxdydr

r3
(5)

and the corresponding Laplace-Beltrami operator by

∆ = r2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂r2

)
− r ∂

∂r
. (6)

The group PSL2(C) acts on H3 as follows: if M = ( a bc d ) ∈ PSL2(C) and P = z+ rj ∈ H3

is considered as a quaternion whose fourth components equals zero, then

MP := (aP + b)(cP + d)−1,

where the inverse is taken in the skew field of quaternions. Let K = Q(
√
D), D < 0, be

an imaginary quadratic number field of discriminant dK and of class number HK = 1.
There are only nine such imaginary quadratic fields. We denote the ring of integers of K
by OK and its unit group by O∗K . It is given by

O∗K =


{±1} if D /∈ {−1,−3},
{±1, ±i} if D = −1,

{±1,±ρ,±ρ2} if D = −3.

(7)

Remark 2.1. Working with class number HK = 1 simplifies the calculations as we only
have to consider one cusp in the spectral decomposition. The methods used to prove
Theorem 1.2 can nevertheless be applied to the analogous problem for other imaginary
quadratic fields, up to dealing with the existence of other cusps in the case of class number
greater than one.

Let Γ := ΓK := PSL2(OK). This is a co-finite subgroup of PSL2(C). As HK = 1,
Γ has only one cusp. The spectral theory of −∆ on MΓ = Γ \ H3 is well-known (see
e.g. [EGM98]). As Γ is not co-compact but co-finite, the spectrum of −∆ consists of
a discrete part of finite multiplicity and an absolutely continuous part of multiplicity 1.
The absolutely continuous part can be described using Eisenstein series which are defined
as follows: let Γ∞ = {γ ∈ Γ : γ∞ =∞} be the stabilizer of the cusp ∞ and Γ′∞ = {γ ∈
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Γ∞ : |tr γ| = 2} to be the set of all parabolic elements of Γ that stabilize∞; in particular
Γ′∞ is a normal subgroup of Γ∞. Note that Γ∞ 6= Γ′∞ only if D = −1 and D = −3. In
these cases Γ∞ also contains elliptic elements of Γ. The Eisenstein series is defined by

E(P, s) =
∑

γ∈Γ′∞\Γ

r(γP )1+s, <(s) > 2. (8)

The theory of Eisenstein series for the hyperbolic 3-space can be found in [EGM98] or
[Hei90]. In order to write the Fourier expansion of the Eisenstein series let ζK(s) denote
the Dedekind zeta function for K and

φ(s) :=
2π

s
√
|dK |

ζK(s)

ζK(1 + s)
(9)

be the scattering matrix for PSL2(OK). Then the Fourier expansion of E∞(P, s) is given
by

E∞(P, s) = r1+s + φ(s)r1−s +
2(2π)1+s

|dK |(1+s)/2Γ(1 + s)ζK(1 + s)

×
∑

06=ω∈OK

|ω|sσ−s(ω)rKs

(
4π|ω|r√
|dK |

)
e

2πi

〈
2ω√
dK

,z

〉 (10)

as proven in e.g. [Hei90, p. 102]. Here σs(ω) denotes the generalized divisor function

σs(ω) =
1

|O∗K |
∑
d∈O,
d|ω

|d|2s

and 〈µ, z〉 = <(µz). A different way to define the Eisenstein series is

E∞(P, s) =
∑

γ∈Γ∞\Γ

r(γP )1+s, <(s) > 2,

and then E(P, s) =
|O∗K |

2
E∞(P, s), see [EGM98, p. 232]. In the three-dimensional case

the Hecke operators are defined as follows: if n ∈ OK \ {0} we defineMn to be the set
of all matrices of the form ( a bc d ), ad − bc = n. Then for f being a Γ-invariant function
the Hecke operator Tn is given by

(Tnf)(P ) :=
1√
N(n)

∑
γ∈Γ\Mn

f(γP ).

Here N(n) = |n|2 is the norm of n ∈ OK . Furthermore, the action of GL2(C) := {M ∈
M2(C) : detM 6= 0} on H3 is given as follows. If M = ( a bc d ) ∈ GL2(C) and P ∈ H, we
set q :=

√
detM and

MP := q−1(aP + b)(cP + d)−1q,

with the inverses being taken in the skew field of quaternions. The theory for Hecke
operators for Bianchi groups is developed in [Hei90]. However, in contrast to Heitkamp
we have incorporated the factor 1/

√
N(n) in the definition of the Hecke operator.

The Fourier expansion of a cusp form is given in [Hei90, Lemma 16.1]. Let f be an
automorphic form with eigenvalue λ = 1 − s2. Then we have the Fourier expansion at
the cusp ∞ given by

f(z + rj) = φ(r, s) +
∑

06=µ∈o2

ρf (µ)rKs(2π|µ̃|r)e(〈µ̃, z〉), (11)
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where µ̃ = (2/
√
dK)µ̄. If the form is L2-normalized, as it will be in this article, then we

can deduce the value of its first coefficient ρf (1) by the Rankin-Selberg method:

|ρf (1)|−2 =
|dK |1/2

4
Λ(1, sym2f), (12)

which should be compared to [Hei90, Korollar 17.6], noting that the convention therein
is the arithmetic normalization ρf (1) = 1 and therefore a non-L2-normalized form. We
emphasize that the numerator 32π4 in [Hei90, p. 125, last equation] should instead
be 128π4.

2.2. Preliminary results. A central tool in our method is the spectral expansion and
the Parseval equality, which reads as follows [EGM98, Section 6.3, Theorem 3.4].

Lemma 2.2 (Spectral expansion). For any ψ ∈ L2(Γ\H3), we have

ψ =
〈ψ, 1〉

vol(Γ\H3)
+
∑
m

〈ψ, um〉um +
1

π
√
|dK ||O×K |

∫
R
〈ψ,E(·, it)〉E(·, it)dt, (13)

where the sum is over a Hecke orthonormal basis (um)m of cusp forms.

We will need to explain the projections occurring when applying this spectral expansion
to f 2g as in the statement of Theorem 1.2, and these involve triple inner products of cusp
forms. To control these terms, we appeal to the Watson-Ichino formula and use more
precisely the following uniform bound.

Lemma 2.3 (Watson-Ichino formula). There is an absolute constant C such that for any
φ1, φ2, φ3 three spherical Hecke-Maaß forms, which we consider as spherical vectors in the
associated automorphic representations π1, π2, π3, we have

|〈φ1, φ2φ3〉|2 :=

∣∣∣∣∫
Γ\G

φ1φ2φ3

∣∣∣∣2 =
C

8π

Λ(1
2
, π1 ⊗ π2 ⊗ π3)∏
i Λ(1, sym2πi)

. (14)

Proof. This is in line with [CFR21, (6.5)], with the precise computation of the “constants"
appearing therein. See also the very recent paper [Nel25] explaining bounds on triple
products in the real case of the quantum unique ergodicity conjecture.

For each i ∈ {1, 2, 3}, let πi be a cuspidal spherical representation in which φi ∈ πi
is a spherical vector. By the Ichino formula [Mar14, Theorem 4], there is an absolute
constant C such that∣∣∣∣∫

Γ\G
φ1φ2φ3

∣∣∣∣2 = C

∫
G

3∏
i=1

〈πi(g)φi, φi〉dg
L(1

2
, π1 ⊗ π2 ⊗ π3)∏
i L(1, sym2πi)

. (15)

The result therefore reduces to proving that the above integral over G of product of
matrix coefficients is, up to a constant, equal to the Gamma factors occurring in the
completed L-functions (14).

We embed π1 and π2 in their respective Whittaker models: denote by W(πi, ψ) the
Whittaker model of π with respect to the character ψ [Bum97, Section II.2.8]. Let
Wi ∈ W(πi, ψ) be a Whittaker function corresponding to φi. We embed π3 in its induced
model I3 as explained in [Bum97, Theorem II.2.7.1], and denote f3 ∈ I3 be the vector
corresponding to φ3, which is given by [Bum97, (5.13) and (5.22)], viz.

f3(n(x)a(y)k) = xs1+s2ysφ3(k) = y1+itf3(k)
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for all g = n(x)a(y)k decomposed according to the Iwasawa decomposition of G, where
n(x) is the unipotent matrix with upper-right entry x and a(y) is the diagonal matrix
parametrized by y. Here, λ = s(1− s) relates the spectral parameter s to the eigenvalue
λ, and s = 1

2
(s1− s2 + 1) = 1 + it. By using [MV10, Lemma 3.4.2] also stated in [Mar14,

Proposition 7], we can express in these terms the sought integral:∫
G

3∏
i=1

〈πi(g)φi, φi〉dg =
|T |2

8π

where

T :=

∫ ∞
0

∫
K

W1(a(y)k)W2(a(y)k)y1+itf3(k)y−2dkd×y. (16)

We now follow the strategy used in [Mar14, Proposition 6] to deal with the integral
over K. We examine the action of the central torus M = K ∩Z on Wi and f3, for which
these are eigenfunctions. Concerning Wi, the left action under K is given in [Bum97,
Proposition II.2.8.1] (it has a weight ki in the notations therein), and the right action
under Z is given in [Bum97, p. 244] for diagonal matrices (it has weight µi); therefore
the action under M = K ∩ Z has necessarily weight ki = µi. As for f3, it has a given
weight on both sides by the explicit computations from [Bum97, (5.22)].

The vector Wi (resp. f3) has a certain weight wi under the right action ofM , therefore
we require w1 − w2 + w3 = 0 for the expression (16) to be nonzero, otherwise a change
of variable k 7→ km does show that the integral over K vanishes. This means that the
functionW1(a(y)k)W2(a(y)k)f3(k) isK-invariant and therefore the value of the integrand
is constant, thus the integral is equal to the value of this function at e.g. k = id. We
therefore obtain

T =

∫ ∞
0

W1(a(y))W2(a(y))y−1+itd×y. (17)

We appeal to the explicit knowledge of the Whittaker functions in our case [Mar14,
Proposition 8, with weights all zero and therefore m = 0], which is also given in [Mar14,
(22), in the case k = 0]. We have

Wi(a(y)) = |Γ(1 + iti)|−1yKiti(4πy). (18)

We input these values in T and use the inversion formula given in [GR07, 6.576] to
obtain ∫ ∞

0

yλKµ(y)Kν(y)dy =
1

Γ(λ+ 1)

∏
±,±

Γ

(
1 + λ± µ± ν

2

)
, (19)

where the product is over both ± and therefore has four factors. All in all, we get

T =
Γ(1+it+it1+it2

2
)Γ(1+it+it1−it2

2
)Γ(1+it−it1+it2

2
)Γ(1+it−it1−it2

2
)

|Γ(1 + it1)Γ(1 + it2)|Γ(1 + it)
.

Therefore, |T | = T T exactly features the eight Gamma factors needed to complete the
L-functions arising in (15), finishing the proof. �

Triple products involving Eisenstein series will also occur when spectrally expanding
f 2g in Theorem 1.2, and these can be controlled by appealing to the unfolding technique.
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Lemma 2.4 (Rankin-Selberg unfolding). For every t ∈ R, denote Et := E(·, it). For
every t, s ∈ R and every cusp forms f and g, we have

〈ukg, Et〉 =
ρk(1)ρg(1)Λ(1+it

2
, g × uk)

2Λ(1 + it)
, (20)

〈Etg, Es〉 =
ρt(1)ρg(1)Λ(1+is+it

2
, g)Λ(1+is−it

2
, g)

2Λ(1 + it)
. (21)

Remark 2.5. This is the analogue of the Watson-Ichino formula when some cuspidal
Hecke-Maaß forms are replaced by Eisenstein series. Taking the squared modulus of the
above inner product and using (12), we indeed obtain

| 〈ukg, Et〉 |2 =
4Λ(1

2
, Et × g × uk)

|dK ||Λ(1 + it)|2Λ(1, sym2g)Λ(1, sym2uk)
, (22)

| 〈Etg, Eτ 〉 |2 =
4Λ(1

2
, Et × Eτ × g)

|dK ||Λ(1 + it)Λ(1 + iτ)|2Λ(1, sym2g)
. (23)

Proof. We start by 〈ukg, Et〉, which we will unfold by inputting the Fourier expansion of
each cusp form and Eisenstein series. This generalizes [Hei90, Section 17.2], where the
computation is restricted to the case uk = g. By using the Fourier expansions (11) of uk
and g, we have

〈uk, gEt〉 =

∫
F

 ∑
06=µ∈o2

ρk(µ)rKitk(2π|µ̃|r)e(〈µ̃, r〉)

 (24)

×

 ∑
06=ν∈o2

ρg(ν)rKitg(2π|ν̃|r)e(〈ν̃, r〉)

Et(z + rj)dzr−3dr. (25)

By replacing the Eisenstein series Et by its definition (8) and unfolding the integral, we
get

〈uk, gEt〉 =

∫ ∞
0

∫
Po

 ∑
06=µ∈o2

ρk(µ)Kitk(2π|µ̃|r)e(〈µ̃, r〉)

 (26)

×

 ∑
0 6=ν∈o2

ρg(ν)Kitg(2π|ν̃|r)e(〈ν̃, r〉)

 dzritdr. (27)

By executing the integration of e(〈µ̃ − ν̃, z〉) over z first, we select only the case where
µ = ν with a weight vol(Po); indeed by [Hei90, p. 122] we have∫

Po

e(〈µ̃− ν̃, z〉)dxdy = vol(Po)1ν=µ. (28)

We therefore obtain

〈uk, gEt〉 = vol(Po)
∑

06=µ∈o2
ρk(µ)ρg(µ)

∫ ∞
0

Kitk(2π|µ̃|r)Kitg(2π|µ̃|r)ritdtdr (29)

=

(
2√
dK

)t
vol(Po)

4πtΓ(t+ 1)

∏
±

Γ

(
1 + it± itk ± itg

2

) ∑
06=µ∈o2

ρk(µ)ρg(µ)

|µ|1+it
(30)
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where the Mellin transform of product of Bessel functions has been replaced by Gamma
factors using (19), which is valid under the condition <(t) > |<(itk)|+ |<(itg)| = 0. Note
moreover that vol(Po) = 1

2

√
|dK |. We conclude by using the fact that∑

06=µ∈o2

ρk(µ)ρg(µ)

|µ|t
= ρk(1)ρg(1)

L(t, f × g)

ζk(2t)
, (31)

and by the defintion of the completing factors:

Λ(s) = (2π/
√
dK)−sΓ(s)ζK(s),

Λ(t, f × g) = (2π/
√
dK)−4t

∏
±,±

Γ(t± itf
2
± itg

2
)L(t, f × g).

We proceed similarly in the case of two Eisenstein series. By inputting the Fourier
expansions of the cusp form (11) and one Eisenstein series (10), while using the definition
of the second Eisenstein series to unfold the integration domain, we get

〈fEt, Es〉 =

∫ ∞
0

∫
Po

(
r
∑
06=µ

ρf (µ)Kit(2π|µ̃|r)e(〈µ̃, z〉)

)

×

(
ris + φ(is)r2−is +

2r

ξK(s)

∑
06=m

|m|is−1σ1−is(m)Kis−1(2π|m̃|r)e(〈m̃, z〉)

)
rit−3dzdr

By executing the integration of e(〈µ̃ − ν̃, z〉) over z first and using (28), we only pick
up the terms where µ = m with a weight vol(Po), and this in particular removes the
constant terms of the Eisenstein series’ expansion. We are therefore left with

〈fEt, Es〉 =
2vol(Po)

ξK(is)

∑
06=µ

ρf (µ)|µ|is−1σ1−is(µ)

∫ ∞
0

Kit(2π|µ̃|r)Kis−1(2π|µ̃|r)rit−1dr.

Appealing again to the explicit Mellin transform of products of Bessel functions in
terms of Gamma factors, we obtain

〈Etf, Es〉 = ρf (1)22−(1−it)
√
|dK |
2

|O×|2

ξK(it)ξK(is)

(
4π√
|dK |

)−it
(32)

×
L( it−is+1

2
, uj)L( it+is+1

2
, uj)

Γ(it)

∏
±,±

Γ

(
it± (is− 1)± itj − 1

2

)
(33)

where we can read off the L-factors as well as the completing gamma factors. �

We recall the Stirling formula that will be used to estimate the Archimedean parts of
the L-functions arising from Watson-Ichino formula and the Rankin-Selberg method.

Lemma 2.6 (Stirling formula). For bounded x ∈ R, as y →∞, we have

|Γ(x+ iy)| � (1 + |y|)x−
1
2 e−

π
2
|y|. (34)

We will use uniform bounds on Eisenstein series, and we prove the following.

Lemma 2.7 (Uniform bounds on Eisenstein series). For any compact Ω ⊂ H3 and any
ε > 0, we have

sup
z∈Ω
|E(z, it)| �Ω,ε (1 + |t|)1+ε. (35)
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Remark 2.8. Assing [Ass19] recently proved a stronger bound on sup-norm for Eisenstein
series with exponent 3/8, matching the quality of [You18]; however the above lemma is
sufficient to our purposes and we provide an elementary proof for completeness.

Proof. We follow closely [You18]. Consider the Fourier expansion given in (10) and the
relation E =

|O∗K |
2
E∞. After applying the Cauchy-Schwarz inequality, it suffices to bound

C(t) =
1

|Γ(1 + it)||ζK(1 + it)|
·
∑

06=ω∈OK

σ0(ω)

∣∣∣∣∣Kit

(
4π|ω|r√
|dK |

)∣∣∣∣∣ ,
the others terms being bounded with respect to Ω. By the reflection formula for the
Gamma function we can rewrite it as

C(t)� 1

|ζK(1 + it)|
·
∑

06=ω∈OK

σ0(ω)

∣∣∣∣∣Kit

(
4π|ω|r√
|dK |

)∣∣∣∣∣ cosh(πt/2)

|1 + t|1/2
.

To simplify the notation, denote L = 4πr/
√
|dK | and notice that both L and 1/L are

bounded in terms of Ω. Applying the uniform asymptotic expansion due to Balogh [Bal67]
for the K-Bessel function, we obtain the estimates

cosh(πt/2)Kit(u)�


t−1/4(t− u)−1/4, if 0 < u < t− Ct1/3,
t−1/3, if |u− t| ≤ Ct1/3,

u−1/4(u− t)−1/4 exp
(
− c(u

t
)3/2
(
u−t
t1/3

)3/2
)
, if u > t+ Ct1/3.

(36)
We split the sum over ωg by considering the following three cases. The contribution of
the range L|ω| ≤ t

2
is bounded by

1

|ζK(1 + 2it)|
∑
|ω|≤t/2L

σ0(ω)

t
�Ω t log2 t, (37)

using |ζK(1 + 2it)|−1 � log t. The contribution of the range |L|ω| − t| ≤ t1/3 gives

1

|ζK(1 + 2it)|
t−1/3

∑
|L|ω|−t|≤t1/3

σ0(ω)

t1/2
�Ω

log t

t5/6

(
t4/3 log t

)
�Ω t

1/2 log2 t (38)

using a trivial bound on the number of ω ∈ OK in the range. The case |L|ω| − t| � ∆
for t1/3 � ∆� t gives

1

|ζK(1 + 2it)|
(t∆)−1/4t1/2

∑
|ω|= t

L
+O( ∆

L
)

σ0(ω)

t
�Ω

log t

(t∆)1/4

(
t1/2

∆

log t
+ tε

)
, (39)

using Shiu’s bound [Shi80] on the function σ̃0(n) = 1√
n

∑
|ω|2=n σ0(ω). These terms then

give the same bound as (37), plus an additional term that is �Ω t−1/3+ε. The contribu-
tion from the remaining range with u > 2t is easily bounded thanks to the exponential
contribution in (36). �

3. Proof of the theorem

We have now all the tools necessary to prove Theorem 1.2. We follows the strategy of
[HHL24].
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3.1. Spectral expansion and first truncation. We want to determine more precisely
the asymptotic behavior of

〈ψ, f 2g〉 :=

∫
Γ\H3

ψf 2g, (40)

where f and g are Hecke-Maaß forms, and where ψ ∈ C∞c (Γ\H3). Apply Parseval formula
from Lemma 2.2 to expand ψ spectrally, so that the above integral can be rewritten as

〈ψ, 1〉〈1, f 2g〉
vol(Γ\H3)

+
∑
m

〈ψ, um〉〈um, f 2g〉+
1

π
√
|dK ||O×K|

∫
R
〈ψ,E(·, it)〉〈E(·, it), f 2g〉dt. (41)

The first inner product 〈ψ, 1〉 is the total mass of ψ, i.e. the volume on which we are
concentrating. Using the compact support and bounds on ψ as well as the symmetry of ∆,
we get that the coefficients 〈ψ, u〉 (no matter whether u is a Maaß form or an Eisenstein
series) decay faster than t−Au for all A > 0. Indeed, using the fact that ∆uk = λkuk, we
obtain

〈ψ, uk〉 = λ−`k 〈ψ,∆
`uk〉 = λ−`k 〈∆

`ψ, uk〉 � λ−`k

∫
|uk| · |∆`ψ| (42)

and, using the Cauchy-Schwarz inequality, the fact that ‖∆`ψ‖2 � 1 (since ψ is C∞c and
fixed) and ‖uk‖2 = 1 (since we chose the forms to be L2-normalized), we obtain that
〈ψ, uk〉 � λ−`k for any ` > 0.

Analogously, we have for the Eisenstein series:

〈ψ,Et〉 = λ−`t 〈ψ,∆`Et〉 = λ−`t 〈∆`ψ,Et〉 � λ−`t

∫
|Et| · |∆`ψ|. (43)

Using the Cauchy-Schwarz inequality, the fact that ‖∆`ψ‖1 � 1 and ‖Et‖∞ � t1+ε from
Lemma 2.7, we obtain 〈ψ, uk〉 � λ−`k for any ` > 0.

Moreover, by applying the Parseval formula to the other terms arising in (41) which
are a product of four terms, we obtain 〈uk, f 2g〉 � (tktf tg)

B for a certain B > 0, and
〈Et, f 2g〉 � (tf tgt)

B for a certain B > 0 (see also the Section 3.2 for a similar argument).
These bounds are easily balanced by the above bounds from the terms involving ψ.
Therefore, this argument truncates the effective spectral range in (41) to the very small
ranges tm � max(tf , tg)

ε and t� max(tf , tg)
ε.

We are therefore left with

〈ψ, f 2g〉 =
〈ψ, 1〉〈1, f 2g〉

vol(Γ\H3)
+ δ

tg�to(1)
f
〈ψ, g〉〈1, f 2g2〉+

∑
uk 6=g

tk�max(tf ,tg)o(1)

〈ψ, uk〉〈uk, f 2g〉 (44)

+
1

π
√
|dK ||O×K|

∫
|t|�max(tf ,tg)o(1)

〈ψ,Et〉〈Et, f 2g〉dt, (45)

where we singled out the term um = g, for it will give the potential main term in
Theorem 1.2.

3.2. Reduction to triple products. Many terms in (44) display inner products in-
volving four forms. In order to make them amenable to the Watson-Ichino formula, we
apply further the spectral expansion from Lemma 2.2 to the terms ukg and Etg, which
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allows to reduce the expression to products of three forms at the cost of an extra spectral
summation. We obtain

〈ψ, f 2g〉 = 〈ψ, 1〉〈1, f 2g〉 (46)

+ δ
tg�to(1)

f
〈ψ, g〉

(
〈f 2, 1〉〈1, g2〉+

∑
j

〈f 2, uj〉〈uj, g2〉+

∫
〈g2, Et〉〈Et, f 2〉dt〉

)

+
∑
uk 6=g

tk�max(tf ,tg)o(1)

〈ψ, uk〉

〈guk, 1〉︸ ︷︷ ︸
=0

+
∑
j

〈guk, uj〉〈uj, f 2〉+

∫
〈ukg, Et〉〈Et, f 2〉dt



+

∫
|t|�max(tf ,tg)o(1)

〈ψ,Et〉

〈gEt, 1〉︸ ︷︷ ︸
=0

+
∑
j

〈gEt, uj〉〈uj, f 2〉+

∫
〈gEt, Es〉〈Es, f 2〉ds


+O(max(tf , tg)

−A).

We need apply the Watson-Ichino formula and further spectral analysis to control the
remaining inner products not involving the very well-behaved ψ. For the constant term,
this is directly the Watson-Ichino formula from Lemma 2.3, which reads

|〈1, f 2g〉|2 = |〈f 2, g〉|2 =
Λ(1

2
, sym2f ⊗ g)Λ(1

2
, g)

Λ(1, sym2f)2Λ(1, sym2g)
. (47)

For the quadruple products 〈u, f 2g〉 = 〈ug, f 2〉, by (46) we need to estimate more
precisely quantities of the form 〈uk, fg〉 and 〈Et, fg〉. Such automorphic triple products
are bounded by means of the Watson-Ichino formula, using (sub)convexity bounds, precise
control on the Archimedean L-factors, via the Stirling formula, and lower bounds on the
special values at 1 occurring as denominators. More precisely, in case an Eisenstein series
arises we use the Rankin-Selberg identity from Lemma 2.4 and get

〈ukg, Et〉 =
ρk(1)ρg(1)Λ(1+it

2
, g × uk)

2Λ(1 + it)
(48)

〈Etg, Eτ 〉 =
ρt(1)ρg(1)Λ(1+it+iτ

2
, g)Λ(1+iτ−it

2
, g)

2Λ(1 + it)
. (49)

In the case only cusp forms occur, we use the Watson-Ichino formula from Lemma 2.3
and obtain

|〈ukg, uj〉|2 �
Λ(1

2
, uk × g × uj)

Λ(1, sym2uk)Λ(1, sym2g)Λ(1, sym2uj)
(50)

|〈uj, f 2〉|2 �
Λ(1

2
, uj × sym2f)Λ(1

2
, uj)

Λ(1, sym2f)2Λ(1, sym2uj)
. (51)

We in particular obtain

| 〈ukg, Et〉 |2 �
Λ(1

2
, Et × g × uk)

|Λ(1 + it)|2Λ(1, sym2g)Λ(1, sym2uk)
(52)

| 〈Etg, Eτ 〉 |2 �
Λ(1

2
, Et × Eτ × g)

|Λ(1 + it)Λ(1 + iτ)|2Λ(1, sym2g)
. (53)
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3.3. Bounds on L-factors. Let ΓC(s) = 2(2π)−sΓ(s). Writing the Gamma factors
explicitly, we obtain the following bounds:

| 〈ukg, Et〉 |2 �
L(1

2
, Et × g × uk)

∏
±,±,± ΓC(

1±it±itf±itg
2

)

|ζK(1 + it)|2L(1, sym2g)L(1, sym2uk)|Γ(1 + it)|2
∏
±,± ΓC(1± itg)ΓC(1± itk)

(54)

| 〈Etg, Eτ 〉 |2 �
L(1

2
, Et × Eτ × g)

∏
± ΓC(1±it±itg±iτ

2
)

|ζK(1 + it)ζK(1 + iτ)|2L(1, sym2g)|ΓC(1 + it)ΓC(1 + iτ)|2
∏
± ΓC(1± itg

2
)
.

(55)

In the case of cusp forms we get the following bounds:

|〈ukg, uj〉|2 �
L(1

2
, uk × g × uj)

∏
±,±,± ΓC(

1±itk±itg±itj
2

)

L(1, sym2uk)L(1, sym2g)L(1, sym2uj)
∏
±,v=k,g,j ΓC(1± itv)

(56)

|〈uj, f 2〉|2 �
L(1

2
, uj × sym2f)L(1

2
, uj)

∏
± ΓC(

1±itj
2

)2
∏
±,± ΓC(

1±itj
2
± itf )

L(1, sym2f)2L(1, sym2uj)
∏
± ΓC(1± itf )2

∏
± ΓC(1± itj)

. (57)

The expressions obtained are similar to the GL2(Q) case of Huang [HHL24], with ΓC(s)
replacing ΓR(s) = π−s/2Γ( s

2
). As a result, after applying Lemma 2.6, it is possible to get

similar estimates to [HHL24], with different polynomial terms. We report the explicit
expressions for completeness.

|〈ukg, uj〉〈uj, f 2〉| � L(1/2, uj)
1
2L(1/2, sym2f × uj)

1
2L(1/2, uk × g × uj)

1
2

L(1, sym2uj)L(1, sym2f)L(1, sym2uk)
1
2L(1, sym2g)

1
2

× e−
π
2
Q1(tj ;tf ,tg ,tk)

tjtf t
1/2
k t

1/2
g

, (58)

|〈Etg, uj〉〈uj, f 2〉| � L(1/2, uj)
1
2L(1/2, sym2f × uj)

1
2L(1/2, Et × g × uj)

1
2

L(1, sym2uj)L(1, sym2f)|ζK(1 + it)|L(1, sym2g)
1
2

× e−
π
2
Q1(tj ;tf ,tg ,tk)

tjtf (1 + |t|)1/2t
1/2
g

, (59)

|〈ukg, Eτ 〉〈Eτ , f 2〉| �
|ζK(1+iτ

2
)L(1/2 + iτ, sym2f)L(1/2 + iτ, uk × g)|

|ζK(1 + iτ)|2L(1, sym2f)L(1, sym2uk)
1
2L(1, sym2g)

1
2

× e−
π
2
Q1(τ ;tf ,tg ,tk)

(1 + |τ |)tf t1/2k t
1/2
g

, (60)

and

|〈Etg, Eτ 〉〈Eτ , f 2〉| �
|ζK(1+iτ

2
)L(1/2 + iτ, sym2f)

∏
± L(1/2 + iτ ± it, g)|

|ζK(1 + iτ)|2|ζK(1 + it)|L(1, sym2f)L(1, sym2g)
1
2

× e−
π
2
Q1(τ ;tf ,tg ,t)

(1 + |τ |)(1 + |t|)1/2tf t
1/2
g

, (61)
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where

Q1(tj; tf , tg, tk) =
∣∣∣tj

2
+ tf

∣∣∣+
∣∣∣tj

2
− tf

∣∣∣+
|tj + tg + tk|

2
+
|tj + tg − tk|

2

+
|tj − tg + tk|

2
+
|tj − tg − tk|

2
− tj − 2tf − tk − tg. (62)

3.4. Final Estimates. We apply the bounds obtained to the study of∑
j

〈guk, uj〉〈uj, f 2〉. (63)

The other terms in (46) can be treated in a similar way. The main input comes from
the study of the function Q1(tj, tf , tg, tk). From (58), we get that if Q1 is large enough,
the exponential contribution will dominate the polynomial terms P (tj, tf , tg, tk) coming
from the convexity bounds available for the central values of the L-functions considered,
(see [IK04]) and the logarithmic factors coming from the symmetric square L-functions
(this is equivalent to the non-existence of Siegel zeros, and this is proven for symmetric
squares of GL(2)-forms in [HR95], conditionally on an hypothesis proven in [Ban97]). For
this reason, the sum in (63) can be truncated to tj < 2tf + tk + tg. In fact, in the other
case we have Q1 > 2tf + tk + tj and it grows linearly in tj, which results in an exponential
decay in tj for the considered terms, from (58). This implies that the contribution of the
second range is negligible or comparable to the first range unconditionally.

We now split the study in two cases. If 2tf < tg − tεg, we obtain that Q1(t, tf , tj, tk) >

tg − 2tf − to(1)
g , where we used tk = t

o(1)
g . Then, an application of the convexity upper

bounds for the L-functions and the logarithmic lower bounds for the symmetric square
L-functions give unconditionally an exponential bound of the form∑

j

〈guk, uj〉〈uj, f 2〉 � e−
π
2

(tg−2tf−t
o(1)
g ). (64)

If 2tf > tg − tεg, we assume GLH. Using the trivial bound Q1 ≥ 0 and (58) we obtain∑
tj<2tf+tk+tg

|〈ukg, uj〉〈uj, f 2〉| �
∑

tj<2tf+tk+tg

(tgtjtf )
δ

tjtf t
1/2
g t

1/2
k

� (tf t
1/2
g )−1+δ′ (65)

for any δ′ > δ > 0, using again the hypothesis tk = t
o(1)
g .

This concludes the proof of Theorem 1.2. �

Remark 3.1. A more accurate study of the conductors of the L-functions involved reveals
the need of a strong form of subconvexity to achieve an o(1) error term. In particular,
in the numerator of (58) we get a degree 16 L-function, whose analytic conductor C is
bounded by

C � t4j t
12
f .

As a consequence, the numerator grows as (t2j t
6
f )
E and a subconvex bound with exponent

E = 1/8− δ for the L-functions is necessary to achieve the result.

Remark 3.2. We expect a similar result to hold in the level aspect. The result would
follow from the contributions to the Watson-Ichino formula coming from the ramified
places. The evaluation of such contributions can be computed explicity as in Lemma 2.3.
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Remark 3.3. The methods of this paper generalize directly to the general case of number
fields F of class number one. The contribution given by the different infinite places in
the analogue of Section 3.3 can be treated separately. The estimates finally reduce to r
copies of the real case as in [HHL24] and s copies of the complex case treated in the
present article, for r and s respectively the number of real and complex embeddings of F .
The expected result is a bound on the error term of the form

Oψ((tf (1 + |2tf − tg|))−r/4+ε(tf t
1/2
g )−s+ε).
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