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Abstract
We aim at studying automorphic forms of bounded analytic conductor in the totally definite
quaternion algebra setting. We prove the equidistribution of the universal family with respect
to an explicit and geometrically meaningful measure. It leads to answering the Sato–Tate
conjectures in this case, and contains the counting law of the universal family, with a power
savings error term.

Keywords Automorphic forms · Arithmetic statistics · Selberg trace formula · Plancherel
equidistribution · Sato–Tate conjecture

1 Introduction

1.1 Landscape

Let F be a number field of degree d over Q. Let A denote the ring of adeles of F . We
consider a totally definite division quaternion algebra B over F , and write R for the places
of F where B is not split. In particular, it contains all the archimedean places by the totally
definite assumption, and this only happens for totally real fields F . We introduce the group
of projective units G = Z\B×, where Z denotes the center of B×. Let A(G) denote the
universal family of G, that is the set of all irreducible automorphic infinite dimensional
representations of G(A). A deep understanding ofA(G) is of fundamental importance in the
theory of automorphic forms.

In order to determine its actual size and some sharper statistical properties, as densities
or equidistribution, we need to truncate it for we then deal with a finite set, hence we need
a suitable notion of size to do so. Turn for a moment to a more usual setting: the one
of general linear groups. The universal family A(G) embeds, via the Jacquet–Langlands
correspondence, as a subfamily of the universal family A(PGL(2)), composed of all the
cuspidal automorphic representations of PGL(2). In the latter context, even in the broader
setting of cusp forms on general linear groups, Iwaniec and Sarnak [20] have defined a good
notion of size, given by the analytic conductor. It is a positive real number c(π) defined
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130 D. Lesesvre

from the functional equation satisfied by the finite part L-function L(s, π) associated to
π ∈ A(PGL(2)), which takes the form

L(1 − s, π̃) = ε̄π X(s, π)L(s, π), (1)

where επ is the root number of π . The completing factor X(s, π) takes value επ at the
central point 1

2 , and the analytic conductor is defined to be c(π) = |X ′(1/2, π)| following
the presentation of Conrey et al. [13]. The function X(s, π) involves the usual arithmetic
conductor as well as archimedean gamma factors, so that the analytic conductor encapsulates
the complexity of π . It allows to truncate the universal family of PGL(2), and hence the one
of G, to a finite set [8]. The truncated universal family may then be introduced as

A(Q) = {π ∈ A(G) : c(π) � Q}, Q � 1. (2)

The problem of counting automorphic representations ordered by analytic conductor goes
back to the work of Iwaniec and Sarnak [20]. In this article, we seek to prove certain basic
properties of this family, such as determining its asymptotic growth, establishing global
equidistribution with respect to a geometrically significant measure, and proving the validity
of the Sato-Tate conjecture in this setting.

1.2 Analogy with the height on an algebraic variety

The counting problem admits an interesting analogy with the well-known question of count-
ing rational points of bounded height on a smooth projective variety over a number field. The
absolute Weil height is the proper notion of size in this setting and is defined by

hPn (x) =
∏

v

max
0�i�n

|xi |1/[F :Q]
v , x = (xi )0�i�n ∈ Pn(F), (3)

where the product runs over the places of F and does not depend on the choice of homoge-
neous coordinates. Given any projective variety V over F endowed with a fixed embedding
ι into the projective space Pn(F), a height function on V can be defined by pulling back the
Weil height on Pn(F), setting

hV (x) = hPn (ι(x)), x ∈ V . (4)

The most natural setting for considering such generalized questions is the one of Fano
varieties, where there are precise conjectures due to Batyrev, Manin [4] and Peyre [33]. On
those grounds, Northcott [31] proved the finiteness of the set of points of bounded height for
the projective spaces, refined by Schanuel [39] in an asymptotic counting law.

Theorem 1 (Schanuel) For all n � 1, there exists Cn > 0 such that for any Q � 1,

#
{
x ∈ Pn(F) : hPn (x) � Q

} = CnQ
n+1 +

{
O (Q log Q) if n = 1, F = Q;
O
(
Qn−1/[F :Q]) otherwise.

The analogy between the Schanuel theorem on counting rational points on projective
spaces and the problem of counting automorphic cusp forms on GL(n) has been particularly
stressed recently, according to Sarnak. The case of quaternion algebras can be embedded in
GL(2) so that, following the above analogy, the notion of analytic conductor we use in our
main theorem is inspired by the procedure for heights: given the by now standard notion of
analytic conductor forGL(2), we pull it back to automorphic forms on quaternion algebras via
the associated identity map between their dual groups, hence defining the notion of analytic
conductor in our setting.
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Counting and equidistribution for quaternion algebras 131

1.3 Counting law for the universal family

The first result of this article gives an asymptotic formula for the cardinality

N (Q) = #A(Q), Q � 1, (5)

Petrow recently handled the problem in a fairly general fashion for automorphic forms on
tori [32]. The case of the universal family for GL(2) is handled by Brumley and Milićević
in the preprint [9]. For division quaternion algebras, the counting law is provided by the
following statement.

Theorem 2 (Counting law for quaternion algebras) There exists C > 0 such that for any
Q � 1,

N (Q) = CQ2 +
{
O
(
Q1+ε

)
if F = Q and B totally definite, for all ε > 0;

O
(
Q2−δF

)
otherwise.

The constant C > 0 is defined explicitly in (8), and δF = 2(1 + [F : Q])−1.

Remarks The form of this asymptotic growth appeals some comments.

(i) There is a similarity between the error term in Theorem 2 and that of the classical
result of Schanuel in Theorem 1 on the number of rational points of bounded height in
projective spaces. His result, when specialized to F = Q, has an error term that picks
up an additional small quantity, namely a power of log, to be compared to the Qε of
Theorem 2.

(ii) The presence of a power savings error term in the totally definite case is noteworthy.
This feature is lost in the corresponding result [9] for GL(2), where only a logarithmic
savings is obtained. The reason for this difference lies in the passage from smooth to
sharp counting at archimedean places, that does not occur in the totally definite setting.

(iii) The center has been removed for technical purposes and to avoid to deal with the central
terms in the Selberg trace formula. All the methods are expected to carry on to a setting
considering the center without considerable adaptation.

(iv) Relying on the machinery developped in [9], it is possible to generalize this result to
general division quaternion algebras, with an error term only displaying a logarithmic
savings. This is worked out in the author’s PhD thesis [30].

The precise knowledge of the constant C unveils a lot of information, and its geometric
interpretation has considerable importance as in the conjectures of Peyre. An explicit and
meaningful formulation of the constant is given below, in the context of the equidistribution
properties of A(G), and shows striking similarities with the ones computed for algebraic
varieties [11].

1.4 Equidistribution of the universal family

Beyond estimating the size of the universal family lies the question of the geometric distribu-
tion of the automorphic representations ofG. A good formulation of the problem is developed
in the work of Sarnak, Shin and Templier [37] and is to find a measure with respect to which
the universal family equidistributes, what is carried on in this section after giving a glance at
the topological and measurable structure the universal family is endowed with.

Each local unitary dual group Ĝv is endowed with the Fell topology and the product∏
v Ĝv is then given the product topology. Introduce the measure μ on

∏
v Ĝv that assigns
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to every basic open set X = ∏
v Xv , i.e. where Xv is an open set of Ĝv and Xv = Ĝv for all

but finitely many v, the positive real number

μ(X) =
∫ �

X

dπ

c(π)2
, (6)

where the regularized integral is defined as

ζ �(1)
∏

v

ζv(1)
−1
∫

Xv

dπv

c(πv)2
. (7)

Here, the conductors c(π) and c(πv) are precisely defined in Sect. 2.1, and ζv is the local
zeta function associated to Fv , the notation ζ �(1) stands for the residue of the Dedekind zeta
function of F at 1, and dπv is the Plancherel measure on Ĝv , introduced and normalized
according to the convention in Sect. 2.2.

Remarks This integral is not as disturbing as it seems for the following reasons.

(i) The Plancherel measure is supported on the tempered dual; since tempered representa-
tions are generic, the conductors appearing in the integral are well-defined for the sets
actually arising in what follows, see Sect. 2.1.

(ii) It is by nomean obvious that the integral (6) actually converges. It is the case andSects. 2.3
and. 4.4 contain the explicit computations of the local factors ensuring the convergence
as well as motivating the regularization.

The measure μ has finite total mass ‖μ‖. All the definitions are now in place to uncover
the expression of the leading constant in Theorem 2, namely

C = 1

2
vol(G(F)\G(A))‖μ‖, (8)

where themeasure giving the volume of the automorphic quotientG(F)\G(A) is normalized
as in Sect. 2.2. The main result is the following one.

Theorem 3 (Equidistribution for quaternion algebras) The universal family of G equidis-
tributes with respect to the measure μ, in the following sense. For every relatively
quasi-compact open set X of

∏
v Ĝv with boundary of measure zero,

#{π ∈ A(Q) : π ∈ X}
N (Q)

−→ μ

‖μ‖ (X), as Q → ∞. (9)

Once this global equidistribution result stated, the Sato-Tate conjecture questions the
behavior of the projections νp of the limit measure on the local components Ĝp when the
norm of p grows. Let Tc be the subgroup of diagonal matrices in SU(2) andW the associated
Weyl group. On the common ground where all the representations in the support of the
Plancherel measures of Gp live, given by the tempered Satake parameters space Tc/W , the
Sato-Tate question acquires a precise meaning and local representations are equidistributed
with respect to the half-circle measure.

Corollary 1 (Sato–Tate for quaternion algebras) For all φ ∈ C(Tc/W ),
∫

Tc/W
φ̂(x)dνp(x) −→

∫

Tc/W
φ̂(x)dμST(x), as Np −→ ∞, (10)
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where dμST is the Sato-Tate measure on the half-circle, i.e.

dμST(x) = 1

π

√

1 − x2

4
dx . (11)

Remark These results generalize to the case of all division quaternion algebras, adapting the
work of [9], see [30].

1.5 Organization of this article

Section 2 is mainly devoted to introducing notations, stating the precise definition of the
analytic conductor, and fixing the normalizations of measures. We recall some facts about
equidistribution and spectral tools required to reduce Theorem 3 to a statement amenable
to trace formula methods, among which the Sauvageot density theorem. In particular, we
state a decomposition of the universal family into harmonic subfamilies obtained by fixing
certain spectral data. In Sect. 3 we show that the proportion of automorphic forms we seek
to estimate can be expressed as a spectral side of the Selberg trace formula, hence can be
expressed in terms of orbital integrals. The main asymptotic term involved in this proportion
comes from the contribution of the identity, which we evaluate in Sect. 4. Other spectral and
geometric terms arise in the trace formula. The spectral ones are those coming from undesired
characters: they are precisely bounded in Sect. 5. The geometric ones are those coming from
the orbital integrals associated to other terms than the identity, and they are bounded in Sect. 6,
opening the path to the claimed asymptotic development. The ultimate Sect. 7 builds on the
known Plancherel measures in the split case in order to prove that the limit measure with
respect to which the universal family equidistributes satisfies the Sato-Tate equidistribution
conjecture.

2 Groundwork

We denote by v the places of F , p the non-archimedian ones, and Op the ring of integers
of Fp for a finite place p. The finite set R of ramification places of B determines it up
to isomorphism. From now on, Latin letters q, d,m, etc. will denote usual integers, while
Gothic letters q, d,m, etc. will denote ideals of integer rings. Many bounds stated in this
paper depend on an arbitrary ε > 0, and the implied constants are allowed to depend on ε.

2.1 Analytic conductor

In order tomake sense of the problem,we need to define precisely the notion of sizewe choose
for representations. It is the analytic conductor, which we introduce in this section. We will
work with B× more than with G, for it lightens notations. This local convention makes no
harm, for we view a representation π of G(A) = PB×(A) as a representation of B×(A)

with trivial central character. By Flath’s theorem, an irreducible admissible representation of
B×(A) decomposes in a unique way as a restricted tensor product π = ⊗vπv of irreducible
smooth representations where almost every component πv is unramified. We want first to
define the conductor for the local components πv .

123



134 D. Lesesvre

The Jacquet–Langlands correspondence as quoted in [18, Theorem 2] and [15, Theorem
10.1 and Eq. (10.1)] allows to reduce to the GL(2) case, and in this one only infinite-
dimensional representation arise. For our purposes, it can be stated as follows.

Theorem 4 (Jacquet–Langlands Correspondence) There is a unique bijection between the
set Asc(GL(2)) of supercuspidal representations of GL(2) and the universal family of B×,

JL : Asc(GL(2)) ←→ A(B×), (12)

satisfying, for every pair of elliptic elements g ∈ PGL(2) and h ∈ B× with same character-
istic polynomials, the following relations on their central characters:

χπ(g) = −χJL(π)(h). (13)

Moreover, the corresponding L-functions are preserved through this map, that is to say

L(s, π) = L(s, JL(π)). (14)

Since the universal family excludes global characters, a representation π in it is generic.
The Jacquet–Langlands correspondence preserves genericity hence, as shown on the diagram
below, associates to π a generic representation JL(π) of GL(2), thus also its local compo-
nents JL(π)v . These local components are also the images by the local Jacquet–Langlands
correspondence JLv(πv) of the local components of π .

π∈A(B×)
JL

v

JL(π)∈A(GL(2))
generic

v

πv
JLv

id if v /∈R
JL(π)v
generic

At split places, the local Jacquet–Langlands correspondence is the identity by the unique-
ness in Theorem 4, for then B×

p 	 GL(2, Fp). The correspondence is unique, thus the local
components at split places πv are generic hence infinite-dimensional, proving the claim.

2.1.1 Non-archimedian case

For finite split places p, by definition Bp 	 M
(
2, Fp

)
so that B×

p is isomorphic to GL(2, Fp).
The notion of local conductor for irreducible smooth infinite-dimensional representations of
GL(2) has been introduced by Casselman [10]. Consider the sequence of compact open
congruence subgroups

K0,p
(
pr
) =

{
g ∈ GL

(
2,Op

) : g ≡
(

� �

0 �

)
mod pr

}
⊆ B×

p , r � 0. (15)

The multiplicative and analytic conductors of an irreducible admissible infinite-
dimensional representation πp of B×

p with trivial central character are then respectively
defined by

c(πp) = pf(πp) and c(πp) = Nc(πp), (16)

where
f(πp) = min

{
r ∈ N : π

K0,p(pr )
p �= 0

}
. (17)
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Counting and equidistribution for quaternion algebras 135

The existence of the conductor is guaranteed by the work of Casselman [10], who also states
that the growth of the dimensions of the fixed vector spaces are given by

dim π
K0,p

(
pf(πp)+i

)

p = i + 1, i � 0. (18)

2.1.2 Archimedian case

The archimedian part of the conductor is introduced by Iwaniec and Sarnak [20]. It is built
on the archimedean factors completing the L-functions associated to automorphic represen-
tations. The archimedean L-factors are of the form, for v|∞,

L(s, πv) =
2∏

j=1

Γv(s − μ j,π (v)), (19)

where Γv(s) = π−s/2Γ (s/2) and the μ j,π (v) are complex numbers. The analytic conductor
is then locally defined to be, for v | ∞,

cv(π) =
2∏

j=1

(
1 + |μ j,π (v)|)2 . (20)

Remark We cannot avoid, following Iwaniec and Sarnak, this archimedean part of the con-
ductor and only consider its arithmetic component. Indeed, we aim at counting irreducible
admissible infinite-dimensional representations of bounded conductor, but this family would
be infinite without control of the archimedian conductor. For instance the family of modular
forms of level one and arbitrary weights constitutes an infinite family of fixed arithmetic con-
ductor: they give rise to the discrete series. Similarly, the family of Maass forms constitutes
an infinite family of fixed weight.

2.1.3 Non-split case

Via the Jacquet–Langlands correspondence stated in Theorem 4, the non-split case is reduced
to the already treated split one, analogouslywith the pullbackof heights for algebraic varieties.
The conductor of an irreducible admissible representationπv of B×

v is defined as the conductor
of its Jacquet–Langlands transfer

c (πv) = c (JL (πv)) . (21)

2.1.4 Characters

For now conductors have been defined only for generic representations. However, characters
can arise as local components at ramified places as discussed above. Every character of B×

p

is a composition
B×
p −→ F×

p −→ C, (22)

where the first application is the reduced norm, and the second one a character of F×
p . In

other words, every character of B×
p is of the form χ0 ◦ N where χ0 is a character of F×

p

and N the reduced norm on B×
p . In order to stay consistent, define the conductor of a local

character at a ramified place as the conductor of its Jacquet–Langlands embedding in GL(2),
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136 D. Lesesvre

which is defined based on the associated functional equation. Since the character χ0 ◦ N is
sent to the twisted Steinberg representation St ⊗ χ0, it follows explicitly

c(χ0 ◦ N ) =
{
p if χ0 unramified;
c(χ0)

2 if χ0 ramified.
(23)

2.1.5 Global analytic conductor

We introduce for an irreducible admissible representation of B×(A) decomposed into π =
⊗vπv its global analytic conductor

c (π) =
∏

v

c (πv) . (24)

This gives a well-defined notion of conductor, for the πv are almost everywhere unramified,
thus of conductor one. It extends to a definition for representations of G(A), viewed as
automorphic representations of B×(A) with trivial central characters.

Remark Analogously to what happens for general linear groups, the conductor could have
been defined directly from the L-functions associated to automorphic representations of
quaternion algebras. These are provided by the Godement-Jacquet [16] construction and
would avoid the appeal to an embedding in GL(n). The Jacquet–Langlands correspondence
preserves the notion of L-function by Theorem 4 and hence also makes this notion of con-
ductor for G compatible with the one obtained by pulling back the conductor on GL(2), thus
this choice of exposition makes no harm compared to directly defining the conductor from
the associated L-functions on G. Thus both choices of definition of the conductor coincide.

2.2 Normalization of measures

At the non-archimedean places, the measure taken onGp is the Haar measureμp normalized
so that Kp = PGL(2,Op), in the split case, or Kp = o×

p the units of a maximal order of
Bp, in the non-split case, gets measure one. This normalisation is independent of the chosen
maximal order [19]. For the archimedean places, we choose the Haar measure normalized
so that the maximal compact subgroup gets measure one.

We now turn to the associated local dual groups. Denote H(Gv) the Hecke algebra of
Gv , that is the algebra consisting of compactly supported complex-valued functions on Gv ,
locally constant at finite places, smooth at archimedian ones. Let H(G(A)) be the Hecke
algebra of G(A). It is the algebra generated by the restricted products φ = ∏

v φv , where
φv is a function of H(Gv) and almost every local component φp is equal to 1Kp . For such
a function φ ∈ H(G(A)), we extend the action of π to H(G(A)), π(φ) acting by the mean
action of π over G with weight φ, that is to say

π(φ) =
∫

G(A)

φ(g)π(g)dg. (25)

This defines a Hilbert-Schmidt integral operator of trace class, thus we can define its Fourier
transform by

φ̂(π) = tr π(φ) = tr

(
v �→

∫

G
φ(g)π(g)vdg

)
. (26)

The unitary dual group Ĝv is endowedwith its usual Fell topology and Plancherel measure
associated with themeasure chosen onGv: it is the unique positive RadonmeasureμPl

v on Ĝv
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such that the Plancherel inversion formula [42] of Harish–Chandra holds, i.e. for functions
φv in the Hecke algebra H(Gv), we have

∫

Ĝv

φ̂v(πv)dμ
Pl
v (πv) = φv(1). (27)

From now on, integrals on Ĝv will be written with the convention that dπv = dμPl
v (πv),

leading to no ambiguity.On Π̂ = ∏
v Ĝv we consider the product topology and the Plancherel

measure, denoted by μPl , given by the product of the local ones. We have so far clarified the
settings necessary to properly introduce the measure μ defined in (6).

Remark We are interested in the universal family, part of the automorphic dual, henceforth of
Π̂ which is already endowed with natural topologies. We aim at equidistribution and density
results, so we choose among topologies in order to strengthen those properties. We thus seek
a quite weak topology, justifying the choice of the product topology instead of the restricted
product one, used when discreteness of automorphic forms is sought.

2.3 Convergence of�

Now that every measure is properly introduced, we come back to the convergence of the
integral (6). In order to prove it, it is sufficient to prove the convergence of local integrals.
Let us first consider archimedean places. We are able to estimate the integral for we know the
involved Plancherel measures [27, Chap. V, Theorem 6]. The principal series representations
with parameter ir have conductor 1 + r2. Their Plancherel measures are up to a constant
r tanh(πr/2)dr or rcotanh(πr/2)dr according to the parity. The discrete series representation
of parameter k has conductor 1+ k2 and Plancherel measure k − 1. Hence in all of the three
cases, the local integrals converge as do the quantities

∫ ∞

0

r tanh(πr/2)

(1 + r2)2
,

∫ ∞

0

rcotanh(πr/2)

(1 + r2)2
and

∑

k�1

k − 1

k4
. (28)

As for the finite places where B splits, Sect. 4.4 computes the associated local integrals
which have finite values. The regularization of the integral (6) is specifically chosen in order
to make the infinite product of those values convergent. The integrals at ramified places are
reduced to treating the previous case by the Jacquet–Langlands correspondence stated in
Theorem 4, so also converge.

2.4 Elements of equidistribution

Let S be afinite set of places of B. Define F(ĜS) to be the space of complex bounded functions
on ĜS supported on a finite number of Bernstein components and whose restriction to the
tempered spectrum is continuous outside a set of measure zero for the Plancherel measure
restricted to each Bernstein component. Introduce the distribution measure of the truncated
universal family,

μQ = 1

N (Q)

∑

π∈A(Q)

δπ , Q � 1.
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138 D. Lesesvre

For a positive Radon measure ν on Π̂ , let

ν( f ) =
∫

Π̂

f (π)dν(π), f ∈ F(ĜS), (29)

We say that a sequence (νn)n of positiveRadonmeasures on Π̂ weakly converges to ameasure
ν if νn( f ) converges to ν( f ) for every f ∈ F(ĜS) when n goes to infinity, for every finite
set of places S. Since the characteristic functions of relatively quasi-compact open sets of Π̂

with zero-measure boundary lie in F(ĜS) by the results of Sauvageot [38, Lemme 7.2], this
proves that weak convergence of μQ to μ/‖μ‖ implies Theorem 3. From now on we deal
with the measure

νQ = 1

Q2

∑

π∈A(Q)

δπ , Q � 1, (30)

easier to handle than μQ . This is motivated by the fact, from Theorem 2, that N (Q) is of
asymptotical order CQ2, so that Theorem 3 is equivalent to: νQ weakly converges to the
measure

ν = C
μ

‖μ‖ = 1

2
vol(G(F)\G(A))μ. (31)

2.5 The Sauvageot density theorem

In order to prove the convergence of νQ( f ) to ν( f ) for every function f ∈ F(ĜS), it is
sufficient to prove it for Fourier transforms of functions in the Hecke algebra of GS . Indeed,
the Sauvageot density theorem [38] states that any function in F(ĜS) can be approximated
in that way.

Theorem 5 (Sauvageot) Let S be a finite set of places. For every f ∈ F(ĜS) and ε > 0,
there exist functions φ,ψ ∈ H(GS) such that

(i) ∀π ∈ ĜS, | f (π) − φ̂(π)| � ψ̂(π),

(ii) μPl
S (ψ̂) � ε.

Let us explain how the Sauvageot theorem allows restricting the proof of Theorem 3 only
to functions that are Fourier transforms of functions in the Hecke algebra. Let f ∈ F(ĜS).
For ε > 0, there exist φ,ψ ∈ H(GS) such that φ̂ and ψ̂ verify the conclusions of the
Sauvageot theorem. We then get

νQ( f ) − ν( f )| � |νQ( f ) − νQ(φ̂)| + |νQ(φ̂ ) − ν(φ̂)| + |ν(φ̂ ) − ν( f )|
� νQ(ψ̂) + |νQ(φ̂ ) − ν(φ̂ )| + ν(ψ̂)

� |νQ(ψ̂) − ν(ψ̂)| + 2ν(ψ̂) + |νQ(φ̂ ) − ν(φ̂ )|.
From the definition of ν and the domination in the Sauvageot theorem it follows, since
conductors are at least one, that

ν(ψ̂) � ζ �
F (1)

∏

v

ζv(1)
−1
∫

Ĝv

ψ̂(πv)
dπv

c(πv)2

�
∏

v

ζv(1)
−1
∫

Ĝv

ψ̂(πv)dπv � μPl
S (ψ̂) � ε

So that we get

|νQ( f ) − ν( f )| � ε + |νQ(ψ̂) − ν(ψ̂)| + |νQ(φ̂ ) − ν(φ̂ )|. (32)
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Counting and equidistribution for quaternion algebras 139

In order to prove that νQ weakly converges to ν, it is then sufficient to show that the
second and third terms vanish for Q → ∞, i.e. to prove the theorem for the narrower class
of functions φ̂ and ψ̂ . We prove indeed slightly better than what is needed for Theorem 3,
with a precise asymptotic development in the case of Fourier transforms.

Theorem 6 For every finite set of places S and φ ∈ H(ĜS), and every ε > 0,

νQ
(
φ̂
) = ν

(
φ̂
)+

{
O
(
Q−1+ε

)
if F = Q and B totally definite;

O
(
Q−δF

)
otherwise.

(33)

2.6 Sieving the universal family

In order to address the problem of the weak convergence of νQ to prove Theorem 6, it
is necessary to decompose the universal family into smaller sets with fixed spectral data,
amenable to trace formula methods. Let S be a finite set of places and φ ∈ H(GS). The
conductor of π ∈ A(G) splits into local conductors, in particular can be written

c(π) = c(πR)c
(
π R
S

)
Nc
(
π R,S

)
. (34)

This decomposition emphasizes the different kind of information and behavior each type
of place is endowedwith, and turns to be a guide for the method. Given a finite set of places S,
recall that every idealm is decomposed in the formm = mSm

S , where such a decomposition
always means that mS is the prime-to-S part of m, i.e. is such that mS ∧ S = 1, and mS if
the S-part ofm, i.e. satisfies supp(mS) ⊆ S. The same decomposition is used without further
notice for the other letters. The multiplicative conductor of the finite split places is fixed to
a certain ideal q of OR , and the isomorphism class of the ramified part is fixed to a certain
isomorphism class σR ∈ Ĝ R . Thus, the universal family A(Q) decomposes as

A(Q) =
⊔

Nq�Q
q∧R=1

⊔

σR∈Ĝ R
c(σR)�Q/Nq

A(q, σR), (35)

where the notation q ∧ R = 1 stands for the fact that no place of R divides q, and where the
sets of fixed spectral data are

A(q, σR) =
{
π ∈ A(G) : πR 	 σR, c(π R

f ) = q
}

.

This decomposition (35) of the universal family reduces the study of the whole family to the
harmonic familiesA(q, σR), easier to grasp in the context of trace formulas. What is critical
is to having got rid of the condition of belonging toA(Q), decomposed into local conditions.
It induces a decomposition of the counting measure as
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νQ(φ̂ ) = 1

Q2

∑

π∈A(Q)

φ̂(π)

= 1

Q2

∑

π ∈ A(G)

c(πR)c
(
π

R,S
f

)
Nc
(
π R
S

)
� Q

φ̂(π)

= 1

Q2

∑

σR ∈ Ĝ R

c(σR) � Q

∑

Nq � Q/c(σR)

q ∧ R = 1

∑

π ∈ A(q, σR)

φ̂(π)

(36)

where the sum over q is meant to run through ideals ofOR . Denote A(q, σR;φ) the innermost
part of the splitting, that is to say

A(q, σR;φ) =
∑

π∈A(q,σR)

φ̂(π). (37)

2.7 Old and new forms

The universal family (2) sees no multiplicities by the multiplicity one theorem for GL(2),
but the trace formula counts them. The spectral multiplicities associated to the spectral
decomposition of L2(G(F)\G(A)), which are more suitable weights for the forthcoming
computations, are given by

m (π, q) = dim
(
πK 0(q)

)
, (38)

where
ZK0(q) =

∏

pr ||q
ZpK0,p

(
pr
) ⊆ B× (AR

f

)
, (39)

and K 0(q) stands for the image of ZK0(q) under the natural projection B× → G. The choice
is made so thatm(π, q) �= 0 is equivalent to c(π R

f ) |q. The analogous sum to (37) additionally
weighted by the multiplicities is

B(q, σR;φ) =
∑

π∈B(q,σR)

m
(
π S, qS

)
φ̂(π), (40)

where
B(q, σR) =

{
π ∈ A(Q) : πR 	 σR, c

(
π R

f

)
| q
}

.

The sum defined by (37) counts the newforms while (40) counts the old ones with respect
to finite prime-to-S split places. The relation between them lies in the following lemma.

Lemma 1 Let q prime to R, σR an irreducible unitary representation of GR and φ ∈ H(GS).
Let λ2 = μ�μ where μ is the Möbius function. For every Q � 1,

A (q, σR;φ) =
∑

d | q
λ2

(q
d

)
B (d, σR;φ)

Proof Recall that, for every finite split place p, Casselman gives the local multiplicites

dim σ
K0

(
pf(σp)+i

)

p = i + 1, i � 0. (41)
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From this immediately follows, after taking the product over all finite split places, that the
global multiplicities are

m (σ, q) = τ2

⎛

⎝ q

c
(
σ R
f

)

⎞

⎠ , (42)

where τ2 = 1�1 is the divisor function. Since
(
σ R
)K 0(q) �= 0 implies c(σ R) | q, the sum

defining B(q, σR;φ) is eventually reduced to a sum over c(σ R) | q. Thus, by the precise
knowledge (42) of the multiplicities,

B (q, σR;φ) =
∑

d |q

∑

σ∈A(d,σR)

τ2

⎛

⎝ q

c
(
σ R
f

)

⎞

⎠ φ̂(σ )

=
∑

d |q
τ2

(q
d

) ∑

σ∈A(d,σR)

φ̂(σ )

=
∑

d |q
τ2

(q
d

)
A (d, σR;φ)

(43)

so that B = τ2�A, with a slight abuse of notation. Hence, by Möbius inversion,

A (q, σR;φ) =
∑

d | q
λ2

(q
d

)
B (d, σR;φ) , (44)

achieving the proof of the claim. ��
Summing over the spectral data appearing in the decomposition (36), the countingmeasure

rewrites as

νQw
(
φ̂
) = 1

Q2

∑

σR ∈ Ĝ R

c(σR) � Q

∑

Nq � Q/c(σR))

q ∧ R = 1

∑

d |q
λ2

(q
d

)
B (d, σR;φ) . (45)

3 Trace formula

Trace formulæ give relations between spectral and geometric quantities, the latter being often
easier to manipulate. We present here the Selberg trace formula [3, Eq. (3.4)] and express the
sought old forms numbers B(d, σR;φ) as a spectral side of this trace formula for a suitable
test function, leaving us with the geometric side to estimate.

3.1 Selberg trace formula

Since the automorphic quotient ofG is compact, the original formulation of the trace formula,
due to Selberg, can be used and combinedwith themultiplicity one theorem. IfΦ is a function
in the Hecke algebra H(G(A)), then

Jgeom(Φ) = Jspec(Φ), (46)

where the spectral and geometric parts are as follows. For γ ∈ G, let Gγ be the stabilizer of
γ in G. The geometric part is defined by
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Jgeom(Φ) :=
∑

{γ }
vol

(
Gγ (F)\Gγ (A)

) ∫

Gγ (A)\G(A)

Φ
(
x−1γ x

)
dx, (47)

where the sum runs through conjugacy classes {γ } in G(F). SinceΦ is compactly supported
and G(F) is discrete in G(A), the sum is finite. However its length depends on the support
of Φ what turns to be a critical difficulty for estimations, for this support will depend on the
spectral parameters. The inner integrals appearing in this geometric side are called the orbital
integrals, Oγ (Φ), defined by

Oγ (Φ) =
∫

Gγ (A)\G(A)

Φ
(
x−1γ x

)
dx . (48)

The spectral part is

Jspec(Φ) =
∑

π⊆L2(G(F)\G(A))

m(π)Φ̂(π). (49)

Here π goes through the isomorphism classes of unitary irreducible subrepresentations of
G(A) in L2(G(F)\G(A)), and recall that Φ̂ is the Fourier transform of Φ, see Sect. 2.2.

Remark The formulaton of the spectral part (49) is Selberg’s original one. The weights
m(π) are the multiplicities of the π ’s in the discrete part of the spectral decomposition of
L2(G(F)\G(A)). The multiplicity one theorem ensures these to be less than one, and the
indexation by π actually part of L2(G(F)\G(A)) makes them nonzero, hence equal to one.

As announced in the outlook of the method, in order to have a problem amenable to the
trace formula it is necessary to formulate statistics quantities on the universal family as a
spectral side, hence needed to select it by the Fourier transforms of suitable test functions.
The aim of the present section is to construct a function Φ ∈ H(G) such that, up to an error
term,

J (Φ) = B (d, σR;φ) . (50)

In the case of factorizable test functionsΦ = ⊗vΦv , the spectral side of the trace formula
factorizes as

Φ̂(π) =
∏

v

Φ̂v(πv). (51)

Hence, in order to achieve the spectral selection (50) it is sufficient to select locally
the conditions appearing in the decomposition of the universal family (45) through Fourier
transforms. The following sections are dedicated to construct local test functions doing so,
aim reached in Lemma 3. The places of F fall into three categories:

• the split finite part, corresponding to p /∈ R∪ S, where the arithmetic conductor is caught
by the means of an explicit filtration, see Sect. 15;

• the split finite part in the support of the test function φ̂, corresponding to p ∈ S\R;
• the ramified part, corresponding to the finite number of v ∈ R, which is handled by fixing

the representations at those places by means of matrix coefficients.
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3.2 Selecting the split conductor

For an ideal d of O, introduce the congruence subgroup given by the product of the corre-
sponding local congruence subgroups in (15), that is to say

K0(d) =
∏

pr ||d
K0,p(p

r ). (52)

The following result gives a test function whose Fourier transform selects the finite split
conductor.

Lemma 2 For an ideal d of O, let

εd = vol
(
K 0(d)

)−1
1K 0(d). (53)

Its Fourier transform selects the multiplicity relative to d. More precisely,

ε̂d(π) = m(π, d), π ∈ A(G). (54)

Proof Let π be an automorphic representation of G. Then π(εd) is the projection of the
representation space Vπ on the subspace πd of the fixed vectors by K 0(d) under the action
of π . Indeed, every π(εd)v, for v in Vπ , is K 0(d)-invariant, for it is an averaging over the
action of K 0(d). For k0 ∈ K 0(d) and v ∈ Vπ ,

π(k0)π (εd) v = vol
(
K 0(d)

)−1
π(k0)

∫

K 0(d)

π(k)vdk

= vol
(
K 0(d)

)−1
∫

K 0(d)

π(k0k)vdk

= vol
(
K 0(d)

)−1
∫

K 0(d)

π(k)vdk = π (εd) v

so that its image lies inπd. The action ofπ(εd) is also idempotent, more precisely the identity
on πd. Indeed, for v0 ∈ πd,

π (εd) v0 = vol
(
K 0(d)

)−1
∫

K 0(d)

π(k)v0dk

= vol
(
K 0(d)

)−1
∫

K 0(d)

v0dk

= v0.

Hence π(εd) is an idempotent endomorphism of image πd, i.e. a projection on πd. The trace
of a projection is its rank, that is to say ε̂d(π) is the dimension of the fixed vector spaces πd.
Those are the sought multiplicities m(π, d), in particular are nonzero if and only if c(π) | d.

��

3.3 Selecting the ramified part

For ramified places, less is known concerning the representations and the choice made in
the decomposition (45) is to fix the corresponding isomorphism class. In the finite dimen-
sional case, knowingmatrix coefficients is sufficient to determine the underlyingmatrix. This
property still holds [25, Corollary 10.26] for supercuspidal representations in the following
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sense. Let σR be a unitary representation of GR . A matrix coefficient, ξσ associated to σR is
a function of the form, given v and w in the space of σR ,

ξv,w
σR

: GR −→ C
g �−→ 〈σ(g)v,w〉 (55)

Matrix coefficients are continuous functions on GR , are compactly supported since GR

is compact, and are locally constant at finite places and smooth at archimedean places.

Remark The fact that matrix coefficients is considered only for ramified places is critical for
selecting purposes. The loss of the compactness of the support for matrix coefficients in the
split case, where some automorphic representations are not supercuspidal, make them fail
to select the corresponding isomorphism class. Such a purpose can be achieved by means of
existence theorems, yet are less precise, see [25, Remark on page 214].

Proposition 1 Let σ and π be automorphic representations of GR, and introduce dπ the
formal degree of π . Then for every pair of unit vectors v and w in the representation space
of σ ,

π
(
ξv,w
σ

)
w = 1π	σ

〈w, v〉
dπ

v. (56)

Taking for v a vector of norm d1/2π , it follows that π
(
ξv,v
σ

)
is the orthogonal projection

ontoCv and in the meanwhile selects the π ’s isomorphic to σ . Considering its trace, this can
be restated as follows.

Proposition 2 Let σ and π be automorphic representations of GR. Let v be a vector of norm
one in the representation space of σ . Then,

ξ̂
v,v
σ (π) = 1π	σ . (57)

From now on, denote ξσ any choice of matrix coefficient as in Proposition 2.

3.4 The chosen test function

The weighted counting number B(d, σR;φ) should be written as a spectral side in the trace
formula. Introduce the test function

Φd,πR;φ =
∏

v

Φv, (58)

which is built with the following local functions:

Places v Local test function Φv

/∈ S, /∈ R, < ∞ εd,v

/∈ S, ∈ R ξπv∈ S, /∈ R, < ∞ φv

∈ S, ∈ R ξπv φ̂v(πv)

where

• φv is the local component of φ on Gv;
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• ξπv is a matrix coefficient for πv;
• εd is the function introduced in Lemma 2, εd,v its v-component.

The sought weightedmeasure is barely reached by the spectral side withΦd,πR;φ , as stated
in the following lemma.

Lemma 3 Let Q � 1. Let d ∧ R = 1 and πR ∈ Ĝ R. Then

B (d, πR;φ) = J
(
Φd,πR;φ

)+ O(Ξ(φ, πR)), (59)

where, introducing the set Xur(G) of unramified characters of G(A),

Ξ(φ, πR) =
∑

χ∈Xur(G)
χR	πR

m(χ R, d)φ̂(χ). (60)

Proof Let Φ = Φd,πR;φ . In order to determine the Fourier transform of Φ recall that for
every pair of places v, w and every a ∈ H(Gv,w), âvaw = âv âw . Thus,

Φ̂ =
∏

v

Φ̂v =
∏

v∈R

ξ̂πv

∏

p/∈R
p/∈S
pr ||d

ε̂pr ,v
∏

p/∈R
p∈S

φ̂p. (61)

Hence only the Fourier transforms of the local components of the test function have to be
determined. The finite prime-to-S split part εd is shown to transform into the characteristic
function of conductors dividing d in Lemma 2 weighted by the corresponding multiplicities.
The ramified local parts ξπv are known to transform into the characteristic functions of the
isomorphism class of πv by Proposition 2. The action of the Fourier transform of Φ follows,
and (61) yields, for σ ∈ A(G),

Φ̂(σ ) = m(σ R, d)φ̂(σ f )1 σR	πR
c(σ R) | d

. (62)

Nevertheless, these conditions also stand for characters: in order to not being killed by
Φ̂ they have to be trivial on K 0(d), i.e. they have to be unramified since det(K 0(d)) = OR .
Moreover, they have to be isomorphic to πR at ramified places. The Fourier transform of
the chosen test function hence does not vanish on unramified characters, unlike awaited. The
corresponding extra contributionΞ is treated separately in Lemma 7, for characters are easier
to embrace and it will be shown to contribute as an error term. ��

3.5 Towards the geometric side

The equidistribution property has been recast as a convergence of spectral measures in Theo-
rem 6. The Selberg trace formula restates it as a geometric quantity. Summing the expressions
above over all the spectral data, we get

νQ(φ̂ ) = 1

Q2

∑

σR∈Ĝ R
c(σR)�Q

∑

Nq�Q/c(σR)
q∧R=1

∑

dS | qS

λ2

(
qS

dS

)
Jgeom

(
Φd,πR;φ

)

+ O

⎛

⎜⎜⎝
1

Q2

∑

σR∈Ĝ R
c(σR)�Q

∑

Nq�Q/c(σR)
q∧R=1

∑

dS | qS

λ2

(
qS

dS

)
Ξ(σR, φ)

⎞

⎟⎟⎠ .
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The main contribution is carried by the first term, the remaining ones being showed below
to contribute as negligible terms. Decompose the geometric side Jgeom(Φ) as sum of two
terms, the first one corresponding to the identity contribution, and the other being the elliptic
remainder, in other words

Jgeom(Φ) = vol (G (F) \G (A))Φ(1) + Jell(Φ), (63)

where the elliptic part is expressed in term of orbital integrals

Jell (Φ) =
∑

{γ }�={1}
vol

(
Gγ (F)\Gγ (A)

) ∫

Gγ (A)\G(A)

Φ
(
x−1γ x

)
dx .

The universal family counting measure now decomposes, via the splitting above, as

νQ = vol (G (F) \G (A)) ν1,Q + νell + O(νΞ,Q), (64)

where

ν1,Q
(
φ̂
) = 1

Q2

∑

σR ∈ Ĝ R

c(σR) � Q

∑

Nq � Q/c(σR)

q ∧ R = 1

∑

dS |qS

λ2

(
qS

dS

)
Φd,πR;φ(1),

νell,Q
(
φ̂
) = 1

Q2

∑

σR ∈ Ĝ R

c(σR) � Q

∑

Nq � Q/c(σR)

q ∧ R = 1

∑

dS |qS

λ2

(
qS

dS

)
Jell(Φd,πR;φ),

νΞ,Q
(
φ̂
) = 1

Q2

∑

σR ∈ Ĝ R

c(σR) � Q

∑

Nq � Q/c(σR)

q ∧ R = 1

∑

dS |qS

λ2

(
qS

dS

)
Ξ(σR, φ).

4 Identity contribution

For a given φ ∈ H(GS), the main term of νQ(φ̂ ) is given by the contribution ν1,Q(φ̂ ) of the
identity, and the other terms will be shown to be negligible. This section is dedicated to the
computation of this identity contribution.

Proposition 3 The contribution of the identity is, for φ ∈ H(GS),

vol (G (F) \G (A)) ν1,Q
(
φ̂
) = ν

(
φ̂
)+
{
O(Q−1 log Q) if B is totally definite and F = Q;
O(Q−δF ) otherwise.

In particular, vol (G (F) \G (A)) ν1,Q equidistributes with respect to ν.

4.1 Evaluating the test function at 1

Before summing over the spectral data, it is necessary to look at the inner part of ν1,Q
(
φ̂
)
.

Fix d an ideal of OR , πR a unitary irreducible representation of GR , and let for this section
Φ = Φd,πR;φ . The very definition (58) of Φ gives

Φ(1) = εK0(dS)(1)φ
R
S (1)ξσR (1)φ̂R(πR). (65)
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4.1.1 Finite split places out of S

For the prime-to-S split finite part, by definition

εK 0(dS) (1) = vol
(
K 0(d

S)
)−1

. (66)

The volume of a cofinite subgroup depends on its index, and the indices of classical congru-
ence subgroups are well-known [14]. Introduce K R,S = ∏

v /∈R∪S Kv . Since Z R,S is fully

contained in K R,S
0 (dS) for all ideal dS ,

[
K

R,S : K 0

(
dS
)]

=
[
K R,S : K0

(
dS
)]

, (67)

by the isomorphism theorems. So thanks to the normalizations chosen for the measures,

εK 0(dS) (1) =
[
K R,S : K0

(
dS
)]

= (
id�μ2) (dS) =: ϕ2(d

S). (68)

4.1.2 Finite split places in S

For the S-split finite part, the Plancherel inversion formula (27) gives

φR
S, f (1) =

∫

Ĝ R
S, f

φ̂R
S, f

(
π R
S, f

)
dπ R

S, f . (69)

4.1.3 Ramified places

For the ramifiedmatrix coefficient (57), by the Plancherel formula (27) and the normalization
chosen for ξπR ,

ξπR (1) =
∫

Ĝ R

1σ	πRdμ
Pl
R (σ ) = μPl

R (πR). (70)

4.2 Splitting the identity contribution

The following decomposition holds for the identity part of the counting measure.

Proposition 4 For every Q � 1,

ν1,Q = ν
(p)
1,Q + ν

(e)
1,Q, (71)

where ν
(p)
1,Q is the main identity term, namely

ν
(p)
1,Q(φ̂ )

= 1

2

ζ S,R�(1)ζ S,R(2)

ζ S,R(4)

∫

π R
S ∈Ĝ R

S

φ̂(π R
S )

c(π R
S )2

∑

NmS�Q/c(π R
S )

mS∧R=1

λ2(m
S)

(NmS)2

×
∑

πR∈Ĝ R
c(πR)�Q/NmSc(π R

S )

φ̂(πR)

c(πR)2
μPl
R (πR)dπ R

S

(72)
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and where ν
(e)
1,Q(φ̂ ) is an extra error term, given by

ν
(e)
1,Q(φ̂ ) � Q−δF+εF

∫

π R
S ∈ Ĝ R

S

φ̂(π R
S )

c(π R
S )2−δF+εF

∑

NmS � Q/c(π R
S )

mS ∧ R = 1

λ2(m
S)

(NmS)2−δF+εF

∑

πR ∈ Ĝ R

c (πR) � Q/NmSc(π R
S )

φ̂(πR)

c(πR)2−δF+εF
μPl
R (πR)dπ R

S .

(73)

Proof The countingmeasure has been decomposed inmeasures on harmonic subfamilies (45)
of fixed spectral parameters. These measures have been given a geometric interpretation by
the mean of the trace formula in Lemma 3, whose identity contribution is given above. After
summation of the identity contributions over the spectral data constituting the truncated
universal family,

ν1,Q
(
φ̂
) = 1

Q2

∫

π R
S ∈Ĝ R

S

φ̂(π R
S )

∑

Nq�Q/c(π R
S )

q∧R=1

∑

dS | qS

λ2

(
qS

dS

)
ϕ2(d

S)

∑

πR∈Ĝ R
c(πR)�Q/Ndc(π R

S )

μPl
R (πR)φ̂(πR)dπ R

S .

Sums of arithmetic functions on ideals of number fields can be explicitly evaluated. This
motivates a permutation of sums and integrals in order to estimate the sum over the volumes
ϕ2(d

S) first, so that

ν1,Q
(
φ̂
) = 1

Q2

∫

π R
S ∈Ĝ R

S

φ̂(π R
S )

∑

NmS�Q/c(π R
S, f )

mS∧R=1

λ2(m
S)

∑

πR∈Ĝ R
c(πR)�Q/Nm

μPl
R (πR)φ̂(πR)

∑

NdS�Q/Nmc(πR)c(πδ,ν )
d∧R=1

ϕ2(d
S)dπ R

S .

The following lemma estimates the innermost sum.

Lemma 4 Let ζ S,R be the prime-to-R-and-S part of the zeta function associated to F, and
ζ S,R�(1) its residue at 1. For any X > 0,

∑

NdS � X
d ∧ R = 1

ϕ2(d
S) = 1

2

ζ S,R�(1)ζ S,R(2)

ζ S,R(4)
X2 +

{
O(X log X) if F = Q;
O(X2−δF ) otherwise.

(74)

Remark It is possible to note a posteriori that the remainder term shown here is sharp, and it
gives rise to the most significant remainder appearing in Theorem 2 and Theorem 6, provided
F �= Q.
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Proof Remind that all the ideals superscrited S are prime to S. Standard estimates of the sum
of ideals given by [26] lead to

∑

NdS�X
d∧R=1

ϕ2(d
S) =

∑

N lS�X
lS∧R=1

μ2(lS)
∑

NmS�X/N l
mS∧R=1

NmS

=
∑

N lS�X
lS∧R=1

μ2(lS)

[
ζ S,R�(1)

2

X2

(N lS)2
+ O

((
X

N lS

)2−δF
)]

= 1

2
ζ S,R�(1)X2

∑

N lS�X
d∧R=1

μ2(lS)

(N lS)2
+ O

⎛

⎜⎜⎜⎝X2−δF
∑

N lS�X
lS∧R=1

μ2(lS)

(N lS)2−δF

⎞

⎟⎟⎟⎠

= 1

2

ζ S,R�(1)ζ S,R(2)

ζ S,R(4)
X2 +

{
O(X log X) if F = Q;
O(X2−δF ) otherwise;

where the knowledge of the Dirichlet series associated to μ2 yielded

∑

N (m)�X

μ2(m)

Nm
∼ ζ �(1)

ζ(2)
log X = O(log X), (75)

in the case F = Q, giving the worst remainder term. Otherwise, the sum is convergent. ��
This lemma induces a splitting of ν1,Q as ν

(p)
1,Q + ν

(e)
1,Q according to the principal and error

parts in the lemma above. ��

4.3 Estimating themain part �(p)1,Q

Proposition 5 For every Q � 1, the main part admits the asymptotic development

vol (G (F) \G (A)) ν
(p)
1,Q

(
φ̂
) = ν

(
φ̂
)+ O(Q−2). (76)

Proof Recall the term ν
(p)
1,Q of Proposition 4, namely

ν
(p)
1,Q(φ)

= 1

2

ζ S,R�(1)ζ S,R(2)

ζ S,R(4)

∫

π R
S ∈ Ĝ R

S

φ̂(π R
S )

c(π R
S )2

∑

NmS � Q/c(π R
S )

mS ∧ R = 1

λ2(m
S)

(NmS)2

×
∑

πR ∈ Ĝ R

c (πR) � Q/NmSc(π R
S )

φ̂(πR)

c(πR)2
μPl
R (πR)dπ R

S .

The following lemma states the convergence of the sum over ramified parts. ��
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Lemma 5 For every Re(s) > 1, the following sum converges as Q → ∞:

∑

πR∈Ĝ R
c(πR)�Q

μPl
R (πR)

c(πR)s
. (77)

Proof The Jacquet–Langlands correspondence states a bijection between Ĝ R and the discrete
part of the spectrum of P̂GL(2, FR) by Theorem 4, which preserves both formal degrees,
which are the Plancherel measures μPl

R (πR), and conductors. Hence,

∑

σR∈Ĝ R
c(σR)�Q

μPl
R (σR)

c(σR)s
�

∑

πR∈̂PGL(2,FR)disc

μPl
R (πR)

c(πR)s
, (78)

and that last sum is finite for Re(s) > 1 by the case of PGL(2) by the computations of [9] or
by Sect. 4.4 below. Hence, it follows the sought convergence for the ramified parts, ending
the proof of the lemma. ��

The prime-to-S-and-R part of the Dirichlet series associated to λ2 converges at 2 to
ζ
S,R
F (2)−2 and makes the expression of ν

(p)
1,Q converge to

1

2

ζ S,R�(1)

ζ S,R(2)ζ S,R(4)

∫

Ĝ R

φ̂(πR)

c(πR)2
dπR

∫

Ĝ R
S

φ̂(π R
S )

c(π R
S )2

dπ R
S . (79)

4.4 Rewriting the constant

Previous computations unveiled the constant

ζ S,R�(1)

ζ S,R(2)ζ S,R(4)
. (80)

It is possible to give to this constant a more geometric flavour by reformulating the special
values of the zeta functions appearing in terms of volumes. This is the content of the following
lemma.

Proposition 6 For every finite set of places S,

ζ S,R�(1)

ζ S,R(2)ζ S,R(4)
=
∫ �

ĜS,R

dπ S,R

c(π S,R)2
= ζ S,R�(1)

∏

p/∈S∪R

ζp(1)
−1. (81)

Proof The knowledge of the volumes of congruence subgroups (68) gives

εK 0,p(pr )(1) = vol
(
K 0,p(p

r )
)−1 = (id�μ2)(pr ). (82)

On the other hand, this volume can be computed by the Plancherel formula. Introduce the
volume of slices of the spectrum of fixed conductor

Mp(p
r ) =

∫

σp∈Ĝp

c(σp)=pr

dσp, r � 1.
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The Plancherel inversion formula then yields

εK 0,p(pr )(1) =
∫

Ĝp

ε̂K 0,p(pr )(πp)dπp =
∫

Ĝp

τ2

(
pr

c(πp)

)
dπp

=
∑

d | pr
Mp(d)τ2

(
pr

d

)
= (Mp�τ2)(p

r ).

Hence, by inversion, Mp = id�μ2�λ2. In particular, the local Dirichlet series associated to
Mp is given by

Dp (s) =
∑

m=pr

r�0

Mp(m)

Nms
= ζp(s − 1)

ζp(s)ζp(2s)
, Re(s) > 1. (83)

Evaluating it at s = 2, a new expression for the local special values appearing in the constant
is ∫

Ĝp

dπp

c(πp)2
= ζp(1)

ζp(2)ζp(4)
, (84)

proving the finiteness of the local integrals defining the equidistribution measure (6) at the
finite places, as claimed in the introduction. However, the infinite product over p /∈ R of these
quantities unfortunately diverges, for 1 is a pole of ζ S,R . This motivates a slight modification
in order to compensate it by the residue at 1. Introduce the regularized integral

∫ �

ĜS,R

dπ S,R

c(π S,R)2
= ζ S,R�(1)

∏

p/∈S∪R

ζp(1)
−1
∫

Ĝp

dπp

c(πp)2
= ζ S,R�(1)

∏

p/∈S∪R

1

ζp(2)ζp(4)
,

ending the proof. ��

The global integral is defined to be

∫ �

Π̂

dπ

c(π)2
=
∫ �

ĜS,R

dπ S,R

c(π S,R)2

∫

ĜS∪R

φ̂(πS∪R)

c(πS∪R)2
dπS∪R = ζ �(1)

∏

v

ζv(1)
−1
∫

Ĝv

dπv

c(πv)2
.

It thus follows the expression (6) of the regularized integral, giving the desired statement
and motivating the choice of both the measure μ and the constant C . Since the error terms
appearing in the above paragraph are those of Dirichlet series at a point distant from their
abscissa of convergence by 1, the expression (79) rewrites

ν
(p)
1,Q(φ̂ ) = 1

2

∫ �

Π̂

φ̂(π)

c(π)2
dπ + O(Q−1), (85)

reaching the term of the proof of Proposition 5. ��

Remark Notice that the Sauvageot theorem is a two-edged result: it opens the path to equidis-
tribution and allows conclusions for characteristic functions which are not of the form φ̂;
however it also spoils the remainder term for general functions. This error term remains only
for specific functions either admissible, i.e. of the form φ̂ for φ in the Hecke algebra of G,
or in particular for the counting problem.
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4.5 Estimating the error term �(e)1,Q

Lemma 6 For every Q � 1,
ν

(e)
1,Q(φ) � Q−δF+εF , (86)

for all εF > 0 for the case F = Q, and for εF = 0 otherwise.

Proof Now turn back to the treatment of the error term ν
(e)
1,Q coming from the error term in

Lemma 4. The bound that has to be refined is

ν
(e)
1,Q(φ) � Q−δF+εF

∫

π R
S ∈Ĝ R

S

|φ̂|(π R
S )

c(π R
S )2−δF+εF

∑

NmS�Q/c(π R
S )

mS∧R=1

λ2(m
S)

(NmS)2−δF+εF

∑

πR∈Ĝ R
c(πR)�Q/NmSc(π R

S )

|φ̂|(πR)

c(πR)2−δF+εF
μPl
R (πR)dπ R

S

The inner sums and integrals converge by Lemma 5, since 2 − δF + εF is always greater
than 1. It follows a remainder term in Q−δF+εF . ��

At last, the asymptotic development obtained in Proposition 5 and the bounds obtained in
Lemma 6 prove the equidistribution of the identity part of the counting measure with respect
to ν, as stated in Proposition 3.

5 Spectral error terms

5.1 Characters contribution

Recall that the global characters contribution is given by

νΞ,Q(φ̂) = 1

Q2

∑

Nq�Q
q∧R=1

∑

πR∈Ĝ R
c(πR)�Q/Nq

∑

dS | qS

λ2

(
qS

dS

)
Ξ(φ, πR). (87)

Lemma 7 For every ε > 0,
νΞ,Q(φ̂) � Q−1+ε. (88)

Proof Similarly to the intervention of the trace formula to make explicit the measure νQ , the
Poisson summation formula is the main tool to count characters. The counting measure for
characters can be interpreted as a spectral side, such that every non-identity terms vanishes
on the geometric side. Recall that for a character πR , since the multiplicities are all equal to
one,

Ξ(πR, φ) =
∑

χ∈Xur(G(A))
χR	πR

φ̂(χ). (89)

Consider GL(2) instead of PGL(2) for simplicity, characters of PGL(2) corresponding to
those of GL(2) trivial on the center. Characters on GL(2) decompose through

G(Fp) −→ F×
p −→ S1, (90)

where the first arrow is given by the determinant and the second by characters of F×
p . In other

words, a character χp of GL(2, Fp) is of the form χ0,p ◦ det where χ0,p is a character of F×
p .
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At an archimedean place v, since the considered characters are trivial on the center, they
are among the trivial one and the sign, hence have conductor 1 at those places. Archimedean
characters are of the form sgnε|det|i t for ε ∈ {0, 1} and t ∈ R. It is not possible to select
precisely continuous parameters, it is hence necessary to supply an approximation by a
localizing function. This motivates the introduction of a compactly supported non-negative
smooth function fv such that f̂v is 1 for t = 0, and | f̂v| � 1. In particular, it vanishes unless
t is small enough, say |t | � T .

For the arithmetic part of the conductor, the only characters not killed by the action of ε̂pr

are the unramified ones. Indeed, recall that

det
(
K0(p

r )
) = O×

p , (91)

so that χ0,p needs to be trivial on O×
p , that is to say be unramified. Introduce, for every

finite split place p, the characteristic function fp of O×
p , whose Fourier transform selects

unramified characters analogously to Lemma 3. Introduce the global test function

f =
∏

p/∈R

fp
∏

v∈R

ξχv

∏

v|∞
v /∈R

fv. (92)

Since f̂p is 1 on unramified characters and the archimedean f̂v’s are less than one, the
Poisson summation formula gives

Ξ(πR, φ) �
∑

χ∈F̂×
f̂ (χ) = 1

vol(F×\A×)

∑

γ∈F×
f (γ ). (93)

Since F× is a discrete set, choosing f∞ with a small enough support leads to kill every
f (γ ) for γ nontrivial. Hence Ξ(πR, φ) � vol(F×\A×)−1 f (1). It remains to evaluate
f (1) = fdS (1) fR(1) f∞(1). For the finite split places, fp(1) = 1, and for the ramified
places, fR(1) = μPl

R (πR). For the archimedean places, the Plancherel inversion formula
gives

f∞(1) =
∫

F̂ R∞
f̂∞(χ)dχ �

∫

|t |�T
dχt �T 1. (94)

Finally, Ξ(πR, φ) � μPl
R (πR). Coming back to the sum (87) defining νΞ,Q(φ̂), it follows

by using the rough bound λ2(n) � Nnε,

νΞ,Q(φ̂) � 1

Q2

∑

Nq�Q
q∧R=1

∑

πR∈Ĝ R
c(πR)�Q/Nq

∑

dS | qS

λ2

(
qS

dS

)
μPl
R (πR)

� 1

Q2

∑

πR∈Ĝ R
c(πR)�Q

μPl
R (πR)

∑

Nd�Q/c(πR)
q∧R=1

∑

Nm�Q/Ndc(πR)
q∧R=1

Nmε

� Q−1+ε
∑

πR∈Ĝ R
c(πR)�Q

μPl
R (πR)

c(πR)1+ε

∑

Nd�Q/c(πR)
q∧R=1

Nd−1−ε

� Q−1+ε

and this last line is provided by the convergence of the sum over ramified representation,
stated in Lemma 5, proving the result. ��
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6 Elliptic error terms

The present section aims at bounding the different terms appearing in the elliptic contribution
to the geometric side, in particular the orbital integrals. A considerable amount of work has
been done in this direction, and we borrow recent results of Binder [6] in order to reach our
goal.

6.1 Strategy

The contribution of the elliptic terms in the trace formula (46) is

Jell (Φ) =
∑

{γ }�=1

vol
(
Gγ (F)\Gγ (A)

) ∫

Gγ (A)\G(A)

Φ
(
x−1γ x

)
dx . (95)

Recall thatΦ denotes the test functionΦd,πR;φ introduced in Sect. 3.4, and that only a subset
of the indices (d, πR;φ) may be used when the dependency on them has to be emphasized.
As a matter of fact, the expression (95) generally requires to bound

– the length of the summation, provided it is finite;
– the global volumes vol

(
Gγ (F)\Gγ (A)

)
;

– the orbital integrals.

Since for every finite place p, the test function Φp is supported on either Kp in the case of
a split place, or on Gp in the case of a ramified place, it is compactly supported on a compact
independent of the chosen spectral parameters. Since G(F) is discrete in G(A), there is only
a finite number of classes contributing to (95), and this number is uniformly bounded with
respect to the choices of spectral parameters. Therefore, the associated global volumes are
also uniformly bounded, so that only the orbital integrals remain to be bounded.

Proposition 7 For every γ ∈ G(F), there is a c > 0 such that

Oγ (Φ) �ε (NdR)−1+εμPl
R (πR). (96)

The next subsections are devoted to the proof of this proposition. The local components
Φp are almost always equal to 1Kp

, so that the corresponding local orbital integrals are almost
always trivial by the normalizations of measures. Following [25], the local decomposition of
orbital integrals for factorizable functions Φ = ⊗vΦv then holds, more precisely

Oγ (Φ) =
∏

v

Oγ,v(Φv) where Oγ,v(Φv) =
∫

Gγ,v\Gv

Φv

(
xvγvx

−1
v

)
dxv. (97)

It thus suffices to dominate these local orbital integrals. The split and ramified cases behave
quite differently and require specific treatments.

6.2 Split orbital integrals

Almost every place is split, thus precise bounds are needed in order to control the global
orbital integral. Fortunately, the test functions chosen at these places are explicit and allows
to sharply control the associated orbital integrals.
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6.2.1 Non-archimedean split places

Lemma 8 For every γ R ∈ GR, every ideal dR of OR and every ε > 0,

Oγ R (dR) �
∏

pr ||dR

|D(γ )|−1
p N

(
pr
)ε

. (98)

Proof By the local factorization of orbital integral, it is sufficient to prove the lemma for a
fixed place. Let p /∈ R and γp ∈ Gp. In the case of a place p /∈ S, the local test function is
of the form εpr , so that

Oγ (εpr ) = vol(K )−1Oγ (1K ), where K = K 0(p
r ). (99)

Bounds for the split orbital integrals are provided by Binder [6, Proposition 8.2.1] in the
specific case of GL(2), and yield the following estimate depending on γp:

Oγp

(
εpr
) � |D(γ )|−1

p N (pr )−1+εvol(K 0(p
r ))−1 � |D(γ )|−1

p N
(
pr
)ε

. (100)

Otherwise, for p ∈ S, the chosen test function is φp and hence can be roughly bounded by

Oγp(φp) � |D(γ )|−1
p , (101)

settling the desired estimates for finite split orbital integrals. ��

6.3 Non-split orbital integrals

Ramified places are in finite number but the explicit behavior of local orbital integrals could
a priori be unbounded. Underlining that the sum over conjugacy classes appearing as the
geometric side of the trace formula is uniformly bounded, we can afford a dependence on γv

at ramified places. We have the following.

Lemma 9 For every ramified place v,

Oγv (Φv) � |D(γ )|−1/2
v μPl

v (πv). (102)

Proof Archimedean and non-archimedean ramified places behave differently. Before turning
to the precise study of each case, note that whateverΦv is ξπv or ξπv φ̂v(πv), the orbital integral
is dominated by the case of the matrix coefficient ξπv , for φ̂v is bounded. In the ramified case,
orbital integrals are characters: for a representation πv ∈ Ĝv , the main geometric lemma of
Arthur [2] implies that

Oγv (ξπv ) � Θπv (γv)μ
Pl
v (πv), (103)

where Θπv stands for the Harish–Chandra character associated to πv . It is in particular
sufficient to bound characters on B×

p in order to get the desired bound for orbital integrals.

6.3.1 Archimedean ramified places

For matrix coefficients, we follow the work of Kim, Shin and Templier [21, Proposition
5.1]. Since all the elements γv are elliptic and regular, the Harish–Chandra character formula
implies that

Θπv (γv) � |D(γ )|−1/2
v . (104)
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6.3.2 Non-archimedean ramified places

Concerning the non-archimedean ramified places p ∈ R, the lead is given to Shin and
Templier [41], who build on the Sally-Shalika character formula in order to give explicit
computations for the characters of each supercuspidal representations of SL(2). They prove
that for every supercuspidal representation πp of SL(2, Fp), and for all semisimple regular
element γp,

Θπp(γp) � |D(γ )|−1/2
p . (105)

Moreover, it suffices to achieve this goal for SL(2). Indeed, Langlands and Labesse [28]
established that every irreducible admissible representation of GL(2) restricts to a direct sum
of at most four irreducible admissible representations of SL(2). Since the Jacquet–Langlands
correspondence maps irreducible representations of Gp to supercuspidal representations by
Theorem 4, and the image of the embedding of Gp in GL(2, Fp) is made of semisimple
regular elements, the bound above apply to Bp, and therefore to Gp.

The bounds obtained in the two cases of ramified places hence settle the proof of Lemma 9.
Moreover, since there are only a uniformly finite number of conjugacy classes γ contributing
in the geometric side of the trace formula, the Weyl’s discriminants D(γ ) are uniformly
bounded, achieving the proof of Proposition 7. ��

6.4 Final estimates

All the tools are now in place to establish the final estimates on the elliptic contribution
νell,Q(φ̂ ) and reach the term of the proof of Theorem 6.

Proposition 8 Let d = [F : Q]. For a finite set of places S, φ ∈ H(GS) and any ε > 0, the
elliptic contribution is dominated by

νell,Q
(
φ̂
) � Q−1/d+ε. (106)

Proof The bounds stated in Proposition 7 and the definition of the elliptic contribution lead
to

Jell
(
Φd,πR;φ

) =
∑

{γ }�=1

vol(Γγ \Gγ )Oγ

(
Φd,πR;φ

)

� (NdS)εμPl
R (πR).

Summing over the spectral data leads to

νell,Q
(
φ̂
) � 1

Q2

∑

Nq � Q
q ∧ R = 1

∑

dS |qS

λ2

(
qS

dS

)
(NdS)ε

∑

πR ∈ Ĝ R

c(πR) � Q/NqS

φ̂(πR)μPl
R (πR)

� Q−1/d
∑

Nq � Q
q ∧ R = 1

∑

dS |qS

λ2

(
qS

dS

)
(NdS)ε+1/d−2
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∑

πR ∈ Ĝ R

c(πR) � Q/NqS

φ̂(πR)μPl
R (πR)

c(πR)2−1/d

where the elementary bound λ2(n) �ε Nnε has been used. Thus, since Lemma 5 ensures
the convergences of the inner sum, it follows that

νell,Q
(
φ̂
) �ε Q−1/d+ε

This achieves the proof that the main term contributing in (64) is the one coming from the
identity as stated in Proposition 3, hence also Theorems 2, 3 and 6. ��

7 Sato-Tate corollary

Theorem 3 proves the existence of a measure ν with respect to which the universal family
equidistributes. Consider the projection νp of ν on the local components Ĝp. Since the νp
are supported on different spaces, it is necessary to make sense of the Sato-Tate problem that
concerns convergence of the measures νp.

The literature often treats the case of measures supported on the unramified tempered
spectrum, as the instances handled by Sarnak [36] or Serre [40]. In those cases, the Satake
isomorphism provides a common parametrization: if T is the standard torus of SL(2,C), the
dual group of PGL(2), and W is the associated Weyl group, then the isomorphism classes of
unramified tempered representations are parametrized by Tc/W where Tc = T ∩ SU (2,C)

is the compact part of T . This last quotient corresponds to the half-circle, giving a common
ground for all the Ĝp,independent of p. Even if the universal family considered does include
ramified representations and the νp are supported on the whole tempered unitary dual, the
contribution of the ramified part of the spectrum vanish when p goes to infinity, so that
asymptotically the spaces can be identified and Tc/W is a posteriori still a relevant common
ground to state the Sato-Tate result.

For GL(2, Fp), the Plancherel measures have been computed by Serre [40] and are given
by

dμPl
p (x) = Np + 1

π

(1 − x2/4)1/2

(Np1/2 + Np−1/2)2 − x2
dx . (107)

In particular they converge, as Np goes to infinity, to the Sato-Tate measure on the half-circle

dμST(x) = 1

π

√

1 − x2

4
dx, (108)

in the sense that for any φ̂ ∈ C(Tc/W ,C), when Np goes to infinity,

∫

Tc/W
φ̂(πp)dμ

Pl
p (πp) −→

∫

Tc/W
φ̂(x)dμST(x). (109)
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For φ̂ ∈ C(T /W ,C), let decompose the measure separating whether the representations
are unramified, i.e. of conductor 1, or not. The measure νp(φ̂ ) hence splits as

∫

Ĝp

φ̂(πp)dνp(πp) =
∫

Ĝp

φ̂(πp)

c(πp)2
dμPl

p (πp)

=
∫

Ĝsph
p

φ̂(πp)dμ
Pl
p (πp) +

∫

Ĝram
p

φ̂(πp)

c(πp)2
dμPl

p (πp),

(110)

where Ĝsph
p stands for the unramified, also called spherical, part of the spectrum and Ĝram

p
for its ramified part. For p sufficiently large, Gp is isomorphic to PGL(2, Fp), so the local
Plancherel measures (107) provide the value of the first integral of the rightmost hand side as
p grows, in particular they converge to the Sato-Tatemeasure. For the second one, dominating
roughly by leaving the dependence in φ which is fixed gives
∫

Ĝram
p

φ̂(πp)

c(πp)2
dμPl

p (πp) �
∫

Ĝram
p

dμPl
p (πp)

c(πp)2
=
∫

Ĝp

dμPl
p (πp)

c(πp)2
−
∫

Ĝsph
p

dμPl
p (πp). (111)

By the normalization of the Plancherel measure, the second integral on the right hand side
is 1. Moreover, as shown in Sect. 4.4, the first integral of the right hand side is equal to

∫

Ĝp

dμPl
p (πp)

c(πp)2
= ζp(1)

ζp(2)ζp(4)
. (112)

Since this last quantity is 1+O(Np−1) by unfolding the definition of the Dirichlet series,
it follows that the ramified part is negligible, achieving the proof of Corollary 1. ��
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