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Abstract. Radziwiłł and Soundararajan unveiled a connection between low-lying zeros and cen-
tral values of 𝐿-functions, which they instantiated in the case of quadratic twists of an elliptic curve.
This paper addresses the case of the family of modular forms in the level aspect, and proves that the
central values of associated 𝐿-functions approximately distribute along a normal law with mean
log log 𝑐 (𝑓 ) and variance (log log 𝑐 (𝑓 ))1/2, where 𝑐 (𝑓 ) is the analytic conductor of 𝑓 , as predicted
by the Keating-Snaith conjecture.

1. Introduction

In practice, 𝐿-functions appear as generating functions encapsulating information about vari-
ous objects, such as Galois representations, elliptic curves, arithmetic functions, modular forms,
Maass forms, etc. Studying 𝐿-functions is therefore of utmost importance in number theory at
large. Two of their attached data carry critical information: their zeros, which govern the distri-
butional behavior of underlying objects; and their central values, which are related to invariants
such as the class number of a field extension. We refer to [7] and references therein for further
hindsight.

1.1. Distribution of zeros. The spacings of zeros of families of 𝐿-functions arewell-understood:
they are distributed according to a universal law, independent of the exact family under consid-
eration, as proven by Rudnick and Sarnak [14]. This recovers the behavior of spacings between
eigenangles of the classical groups of random matrices. However the distribution of low-lying
zeros, i.e. those located near the real axis, attached to reasonable families of 𝐿-functions does de-
pend upon the specific setting under consideration. See [15] for a discussion in a general setting.

More precisely, let 𝐿(𝑠, 𝑓 ) be an 𝐿-function attached to an arithmetic object 𝑓 . Consider its non-
trivial zeros written in the form 𝜌 𝑓 = 1

2 + 𝑖𝛾 𝑓 where 𝛾 𝑓 is a priori a complex number. There is
a notion of analytic conductor 𝑐 (𝑓 ) of 𝑓 quantifying the number of zeros of 𝐿(𝑠, 𝑓 ) in a given
region, viz. letting 𝑁 (𝑓 ) be the number of zeros 𝜌 𝑓 such that 0 ⩽ Re 𝜌 𝑓 ⩽ 1 and 0 ⩽ Im 𝜌 𝑓 ⩽ 1
we have 𝑁 (𝑓 ) ∼ log(𝑐 (𝑓 ))/2𝜋 . We renormalize the mean spacing of the zeros to 1 by setting
𝛾 𝑓 = log(𝑐 (𝑓 ))𝛾 𝑓 /2𝜋 . Let ℎ be an even Schwartz function on R whose Fourier transform is com-
pactly supported, in particular it admits an analytic continuation to all C. The one-level density
attached to 𝑓 is defined by

𝐷 (𝑓 , ℎ) :=
∑︁
𝛾𝑓

ℎ
(
𝛾 𝑓

)
. (1.1)

Date: November 6, 2024.

1



The analogy with the behavior of small eigenangles of random matrices led Katz and Sarnak to
formulate the so-called density conjecture, claiming the same universality for the types of sym-
metry of families (understood in a reasonable sense, see [15]) of 𝐿-functions as those arising for
classical groups of random matrices.

Conjecture 1 (Katz-Sarnak). Let F be a family of 𝐿-functions in the sense of Sarnak, and F𝑋 a finite
truncation increasing to F when 𝑋 grows. Then there is one classical group 𝐺 among U, SO(even),
SO(odd), O or Sp such that for all even Schwartz function ℎ(𝑥) on R with compactly supported
Fourier transform,

1
|F𝑋 |

∑︁
𝑓 ∈F𝑋

𝐷 (𝑓 , ℎ) −−−−→
𝑋→∞

∫
R
ℎ(𝑥)𝑊𝐺 (𝑥)𝑑𝑥, (1.2)

where𝑊𝐺 (𝑥) is the explicit distribution function modeling the distribution of the eigenangles of the
corresponding group of random matrices, explicitly𝑊U(𝑥) = 1 and

𝑊O(𝑥) = 1 + 1
2
𝛿0(𝑥), 𝑊SO(even) (𝑥) = 1 + sin 2𝜋𝑥

2𝜋𝑥
,

𝑊SO(odd) (𝑥) = 1 − sin 2𝜋𝑥
2𝜋𝑥

+ 𝛿0(𝑥), 𝑊Sp(𝑥) = 1 − sin 2𝜋𝑥
2𝜋𝑥

.

(1.3)

The family F is then said to have the type of symmetry of 𝐺 .

Various results towards this conjecture have been established in the recent two decades, following
the seminal paper of Iwaniec, Luo and Sarnak [6]; we refer to [15] for a general discussion and
various references.

1.2. Distribution of central values. The distribution of central values of 𝐿-functions is also
finely understood, and the Keating-Snaith conjecture predicts that the logarithmic central values
log𝐿( 1

2 , 𝑓 ) are asymptotically distributed according to a normal distribution, with explicit mean
and variance depending on the family.

Conjecture 2 (Keating-Snaith). Let F be a reasonable family of 𝐿-functions in the sense of Sarnak,
and F𝑋 a finite truncation increasing to F when 𝑋 grows. There is a mean 𝑀F and a variance 𝑉F
such that for any real numbers 𝛼 < 𝛽 ,

1
|F𝑋 |

�����
{
𝑓 ∈ F𝑋 :

log𝐿( 1
2 , 𝑓 ) −𝑀F

𝑉
1/2
F

∈ (𝛼, 𝛽)
}����� −−−−→𝑋→∞

1
√

2𝜋

∫ 𝛽

𝛼

𝑒−𝑥
2/2𝑑𝑥. (1.4)

In particular, the family of the logarithmic central values log𝐿( 1
2 , 𝑓 ) equidistributes asymptotically

with respect to a normal distribution.

Remark 1. In the above statement, in the case 𝐿( 1
2 , 𝑓 ) = 0 its logarithm is understood as −∞.

Conjecturally, the central value is always non-negative, as it can be seen assuming the generalized
Riemann hypothesis and using a continuity argument on the real line. In certain cases, positivity
can be obtained directly by applying Waldspurger’s formula, but it remains unknown in general.
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1.3. Relation between both conjectures. Radziwiłł and Soundararajan [13] claimed a general
principle that any restricted result towards Conjecture 1, can be refined to show that most such
𝐿-values have the typical distribution predicted by Conjecture 2. They instantiated this technique
in the case of quadratic twists of a given elliptic curve and suggested the wide applicability of this
approach, in particular in the case of modular forms building on the pioneering work of Iwaniec,
Luo and Sarnak [6]. This paper shows that this principle indeed holds and provides the proof in
the case of modular forms in the level aspect.

More precisely, for integers 𝑘 ⩾ 2 and 𝑞 ⩾ 1, let 𝐻𝑘 (𝑞) be an orthogonal basis of primitive Hecke
eigenforms, which is a basis of the space of newforms 𝑆new

𝑘
(𝑞), normalized so that their first

Fourier coefficients are 𝑎 𝑓 (1) = 1. We let 𝑐 (𝑓 ) = 𝑘2𝑞 be the analytic conductor [7] of 𝑓 . Introduce
for a general sequence (𝑎 𝑓 )𝑓 ∈𝐻𝑘 (𝑞) the harmonic average∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑎 𝑓 :=

Γ(𝑘 − 1)
(4𝜋)𝑘−1

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑎 𝑓

∥ 𝑓 ∥2 (1.5)

which includes the suitable weights in order to apply the Petersson trace formula. In this setting,
the seminal work of Iwaniec, Luo and Sarnak [6] as well as the recent achievement of Baluyot,
Chandee and Li [1] obtain the following restricted statement towards Conjecture 1.

Theorem 1 (Iwaniec, Luo, Sarnak & Baluyot, Chandee, Li). For any smooth function Ψ compactly
supported and any Schwartz function ℎ such that its Fourier transform ℎ̂ is supported in (−4, 4), we
have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝐷 (𝑓 , ℎ) −−−−→

𝑄→∞

∫
R
𝑊Oℎ = ℎ̂(0) + 1

2
ℎ(0), (1.6)

where𝑊O = 1 + 1
2𝛿0 is the orthogonal density and 𝑁 (𝑄) is the weighted cardinality of the family,

𝑁 (𝑄) :=
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
1. (1.7)

Building on this result and exploiting the methodology outlined by Radziwiłł and Soundararajan,
we prove the following statement towards Conjecture 2.

Theorem 2. For any 𝑞 ⩾ 1 and 𝑘 ⩾ 2, let 𝐻𝑘 (𝑞) be an orthogonal basis of primitive Hecke
eigenforms of level 𝑞, weight 𝑘 and trivial nebentypus, which is also a basis of the space of new-
forms 𝑆new

𝑘
(𝑞), normalized so that their first Fourier coefficients are 𝑎 𝑓 (1) = 1. Assume the general-

ized Riemann hypothesis for the symmetric squares L-functions 𝐿(𝑠, sym2𝑓 ).
For any smooth function Ψ compactly supported and for any real numbers 𝛼 < 𝛽 , we have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) �����
{
𝑓 ∈ 𝐻𝑘 (𝑞) :

log𝐿
( 1

2 ,𝑓
)
+1

2 log log 𝑐 (𝑓 )
√

log log 𝑐 (𝑓 )
∈ (𝛼, 𝛽)

}����� ⩾ 5
8

1
√

2𝜋

∫ 𝛽

𝛼

𝑒−𝑥
2/2𝑑𝑥 + 𝑜 (1).

This result is in phase with Conjecture 2 with 𝑀F = −1
2 log log 𝑐 (𝑓 ) and 𝑉F = log log 𝑐 (𝑓 ). Note

that [13] mentions the analogous result in the weight aspect on average, for the full modular
group.
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Remark 2. In the case of a modular form with sign 𝜀 𝑓 = −1 in the functional equation, its asso-
ciated central L-value trivially vanish, so that in such a case there is no hope to obtain a lower
bound with a constant 1 towards the Keating-Snaith conjecture (which hides such issues in the
notion of "reasonable" family). Using the sieving technique from [6], it is possible to isolate the
modular forms having positive sign in the functional equation, and the methods presented here
would yield a constant 13/16.

1.4. Strategy of proof and structure of the paper. In Section 2 we recall the needed defini-
tions on modular forms and 𝐿-functions. In particular, explicit formulas relate central values of
𝐿-functions to sums of modular coefficients over primes,

log𝐿( 1
2 , 𝑓 ) {

∑︁
𝑝⩽𝑥

𝑎 𝑓 (𝑝)√
𝑝

− 1
2

log log𝑥, (1.8)

so that the claimed mean is already appearing and most of the study reduces to understanding
the distribution of the above sums over primes, denoted 𝑃 (𝑓 , 𝑥), as well as the error in the above
approximation, which can be expressed as a sum over zeros of 𝐿-functions. In order to study the
distribution of the sums over primes 𝑃 (𝑓 , 𝑥), we appeal to the moment method and examine the
behavior of their powers 𝑃 (𝑓 , 𝑥)𝑘 . Regrouping equal primes together, this leads to consider sums
of the form ∑︁

𝑝1,...,𝑝ℓ
𝑝𝑖≠𝑝 𝑗

𝑎 𝑓 (𝑝1)𝛼1 · · ·𝑎 𝑓 (𝑝ℓ)𝛼ℓ
𝑝
𝛼1
1 · · · 𝑝𝛼ℓ

ℓ

, (1.9)

where the 𝑝𝑖 are prime numbers and the 𝛼𝑖 are positive integers. The study of these sums con-
stitutes the heart of the paper and requires to finely understand sums of Fourier coefficients of
modular forms. In Section 3, the contribution of the terms corresponding to 𝛼𝑖 = 2 is shown to be
the dominant term, and to match the corresponding moment of the normal distribution i.e. the
main term in Theorem 3. We inductively reduce the study of the other sums of the form (1.9) to
the case where the only powers arising are 𝛼𝑖 = 1; these are then inductively shown to contribute
as an error term by using the harmonic average and trace formulas, a strategy implemented in
Section 4. Section 5 concludes the proof by showing that the extra terms arising in the explicit
formula, in the guise of sum over zeros, are negligible except for a small proportion of modular
forms. This is the place where limited results towards the distribution of low-lying zeros are used,
and is the origin of the loss in Theorem 2 compared to the Keating-Snaith conjecture.

Remark 3. Radziwiłł and Soundararajan [13] outline a general strategy to prove such results.
However, in their specific case of quadratic twists of elliptic curves, they rely on the Poisson
summation formula to estimate character sums, as well as the complete multiplicativity os char-
acters. These tools are however not as neat in the case of modular coefficients, and it requires
the inductive use of Hecke relations instead of multiplicativity, and of trace formulas instead of
Poisson summation formula.

2. Odds and ends

2.1. Modular L-functions. We start recalling the needed theory of modular forms, referring
to [8] for a detailed account. Let 𝑆𝑘 (𝑞) be the space of holomorphic cusp forms of weight 𝑘 ,
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level 𝑞 and trivial nebentypus. A cusp form 𝑓 ∈ 𝑆𝑘 (𝑞) has an attached 𝐿-function defined by

𝐿(𝑠, 𝑓 ) =
∞∑︁
𝑛=1

𝑎 𝑓 (𝑛)
𝑛𝑠

, (2.1)

where the 𝑎 𝑓 (𝑛) are its Fourier coefficients, defined by the Fourier expansion

𝑓 (𝑧) =
∑︁
𝑛⩾1

𝑎 𝑓 (𝑛)𝑛(𝑘−1)/2𝑒 (𝑛𝑧). (2.2)

The modular forms are arithmetically normalized, i.e. we assume that 𝑎 𝑓 (1) = 1. In this nor-
malization, Deligne’s bound states that 𝑎(𝑛) ≪ 𝑑 (𝑛) ≪ 𝑛𝜀 , where 𝑑 (𝑛) denotes the divisor
function. In particular, the Dirichlet series (2.1) converges for all Re(𝑠) > 1. The degree two
𝐿-function 𝐿(𝑠, 𝑓 ) can be completed by explicit gamma factors [5, Section 5.11] so that we have
the functional equation

Λ(𝑠, 𝑓 ) :=
(√
𝑞

2𝜋

)𝑠
Γ(𝑠 + 𝑘−1

2 )Γ(𝑠 + 𝑘+1
2 )𝐿(𝑠, 𝑓 ) = 𝜀 𝑓Λ(1 − 𝑠, 𝑓 ), (2.3)

where 𝜀 𝑓 ∈ {±1} is the root number of 𝑓 .

If 𝑓 ∈ 𝑆𝑘 (𝑞) is an eigenfunction of all the Hecke operators 𝑇𝑛 for (𝑛, 𝑞) = 1, we say that 𝑓 is a
Hecke eigenform. If it moreover lies in the orthogonal complement of the space of the oldforms,
i.e. those of the form 𝑓 (𝑧) = 𝑔(𝑑𝑧) for a certain 𝑔 ∈ 𝑆𝑘 (𝑞/𝑑) where 𝑑 | 𝑞, then we say that 𝑓
is a newform, case in which it is an eigenform for the Hecke operators 𝑇𝑛 for all 𝑛 ⩾ 1. Let
𝐻𝑘 (𝑞) ⊂ 𝑆𝑘 (𝑞) be an orthogonal basis of the space of newforms consisting of Hecke eigenforms 𝑓 .
For 𝑓 ∈ 𝐻𝑘 (𝑞), we have the Euler product

𝐿(𝑠, 𝑓 ) =
∏
𝑝

(1 − 𝑎 𝑓 (𝑝)𝑝−𝑠 + 𝑝−2𝑠)−1 =
∏
𝑝

(1 − 𝛼 𝑓 (𝑝)𝑝−𝑠)−1(1 − 𝛽 𝑓 (𝑝)𝑝−𝑠)−1, (2.4)

where the product is over prime numbers 𝑝 , and 𝛼 𝑓 (𝑝), 𝛽 𝑓 (𝑝) ∈ C are called the spectral param-
eters of 𝑓 at 𝑝 . This expression encapsulates the Hecke relations satisfied by the coefficients. By
taking the logarithmic derivative of this expression, we obtain

−𝐿
′

𝐿
(𝑠, 𝑓 ) =

∑︁
𝑛⩾1

Λ𝑓 (𝑛)
𝑛𝑠

, (2.5)

where Λ𝑓 (𝑛) = (𝛼 𝑓 (𝑝)𝑘 + 𝛽 𝑓 (𝑝)𝑘) log(𝑝) if 𝑛 = 𝑝𝑘 is a prime power, and Λ𝑓 (𝑛) = 0 otherwise.

We assume the generalized Riemann hypothesis for the symmetric squares L-functions𝐿(𝑠, sym2𝑓 )
all along the paper.

2.2. Explicit formula for sums over zeros. We have the celebrated Weil explicit formula,
proven for instance in [6, (4.11)], relating sum over zeros of 𝐿-functions and sum over primes
of their spectral parameters. For any smooth function ℎ with compact Fourier support, we have

𝐷 (𝑓 , ℎ) = ℎ̂(0) − 2
log 𝑐 (𝑓 )

∑︁
𝑝

∑︁
𝜈⩾1

(𝛼 𝑓 (𝑝)𝜈 + 𝛽 𝑓 (𝑝)𝜈 )
log𝑝
𝑝𝜈/2 ℎ̂

(
𝜈 log𝑝

log 𝑐 (𝑓 )

)
+𝑂

(
1

log 𝑐 (𝑓 )

)
. (2.6)

Using the relations between coefficients and spectral parameters when 𝑝 ∤ 𝑞, and the Deligne
bounds on 𝑎 𝑓 (𝑛), we obtain that the terms 𝜈 ⩾ 3 contribute as an error, so that we deduce as
in [6, Lemma 4.1] the following expansion of the one-level density.
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Proposition 1 (Explicit formula for sums over zeros). We have

𝐷 (𝑓 , ℎ) = ℎ̂(0) + 1
2ℎ(0) + 𝑃

(1) (𝑓 , ℎ) + 𝑃 (2) (𝑓 , ℎ) +𝑂
(
log log 𝑐 (𝑓 )

log 𝑐 (𝑓 )

)
, (2.7)

where, for 𝜈 ⩾ 1, we let

𝑃 (𝜈) (𝑓 , ℎ) = 2
log 𝑐 (𝑓 )

∑︁
𝑝∤𝑞

𝑎 𝑓 (𝑝𝜈 )
log𝑝
𝑝𝜈/2 ℎ̂

(
𝜈 log𝑝

log 𝑐 (𝑓 )

)
, (2.8)

where the sum runs over prime numbers 𝑝 not dividing 𝑞.

Remark 4. The stated result from [6, Lemma 4.1] display the contribution of the squares of primes,
i.e. the term 𝑃 (2) (𝑓 , ℎ). This term can be included in the error term under the generalized Riemann
hypothesis of 𝐿(𝑠, sym2𝑓 ) that we assume for other – but similar – purposes, see [6, (4.23)].

2.3. Explicit formula for central values. The connection between central values of𝐿-functions,
sums over primes and sums over zeros dates back to Selberg, and can be found in [13, Proposi-
tion 1] in the case of quadratic Dirichlet characters. The proof carries on mutatis mutandis.

Proposition 2 (Explicit formula for central values). Assume that 𝐿( 1
2 , 𝑓 ) is nonzero. We have, for

all 𝑥 ⩽ 𝑐 (𝑓 ),

log𝐿( 1
2 , 𝑓 ) = 𝑃 (𝑓 , 𝑥) −

1
2 log log𝑥 +𝑂

( log 𝑐 (𝑓 )
log𝑥

+
∑︁
𝛾𝑓

log(1 + (𝛾 𝑓 log𝑥)−2)
)
, (2.9)

where we defined the sum over primes

𝑃 (𝑓 , 𝑥) =
∑︁
𝑝<𝑥
𝑝∤𝑞

𝑎 𝑓 (𝑝)
𝑝1/2 . (2.10)

Note that the term −1
2 log log𝑥 is the expected mean of the logarithmic central values as predicted

by Conjecture 2 and stated in Theorem 2. This property reduces the study of central 𝐿-values to
the study of their distribution around the mean, which is governed by the above sum over primes
(studied in Theorem 3) and by the sum over zeros in the error term, which will be addressed in
Section 5.

2.4. Trace formulas. We introduce in this section quasi-orthogonality statements which will
be central to understand harmonic averages of coefficients. Recall that we denote 𝐻𝑘 (𝑞) an or-
thogonal basis of Hecke newforms of level 𝑞 and introduce 𝐵𝑘 (𝑞) an orthogonal basis of all Hecke
eigenforms of level 𝑞.

2.4.1. Petersson trace formula. Consider the averages

Δ𝑞 (𝑚,𝑛) :=
∑︁ℎ

𝑓 ∈𝐵𝑘 (𝑞)
𝑎 𝑓 (𝑚)𝑎 𝑓 (𝑛). (2.11)

We then have the following quasi-orthogonality statement [6, Proposition 2.1].
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Proposition 3 (Petersson trace formula). For𝑚,𝑛, 𝑞 ⩾ 1, we have

Δ𝑞 (𝑚,𝑛) = 𝛿 (𝑚,𝑛) + 2𝜋𝑖−𝑘
∑︁
𝑐⩾1
𝑞 |𝑐

𝑆 (𝑚,𝑛, 𝑐)
𝑐

𝐽𝑘−1

(
4𝜋

√
𝑚𝑛

𝑐

)
(2.12)

where 𝛿 (𝑚,𝑛) is the Kronecker delta symbol, 𝐽𝑘−1 is the J-Bessel function of order 𝑘−1, and 𝑆 (𝑚,𝑛, 𝑐)
is the GL(2) Kloosterman sum, defined by

𝑆 (𝑚,𝑛, 𝑐) :=
∑︁

𝑎∈(Z/𝑐Z)×
𝑒

(
𝑎𝑚 + 𝑎𝑛

𝑐

)
, (2.13)

where 𝑎 denotes the inverse of 𝑎 in (Z/𝑐Z)×.

Define the average of coefficients over the newforms,

Δ★
𝑞 (𝑚,𝑛) :=

∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑎 𝑓 (𝑚)𝑎 𝑓 (𝑛). (2.14)

We have the following sieving result that relates averages over 𝐵𝑘 (𝑞) and over 𝐻𝑘 (𝑞), in other
words allowing to sieve oldforms in, see [1, Lemma 2.3].

Lemma 1. Suppose that𝑚,𝑛, 𝑞 are positive integers with (𝑚𝑛,𝑞) = 1, and let 𝑞 = 𝑞1𝑞2 where 𝑞1 is
the largest factor of 𝑞 satisfying 𝑝 | 𝑞1 ⇔ 𝑝2 | 𝑞 for all primes 𝑝 . Then we have

Δ★
𝑞 (𝑚,𝑛) =

∑︁
𝑞=𝐿1𝐿2𝑑
𝐿1 |𝑞1
𝐿2 |𝑞2

𝜇 (𝐿1𝐿2)
𝐿1𝐿2

∏
𝑝 |𝐿1
𝑝2∤𝑑

(
1 − 𝑝−2)−1 ∑︁

𝑒 |𝐿∞2

Δ𝑑 (𝑚𝑒2, 𝑛)
𝑒

. (2.15)

Remark 5. Note that, because of the Möbius function 𝜇 (𝐿1𝐿2), we necessarily have (𝐿2, 𝑑) = 1 and
(𝑒, 𝑑) = 1, which will be of much use later.

2.4.2. Kuznetsov trace formula. The spectral theory of automorphic forms is explained in various
references such as [5, Chapter 15]. We introduce the notations from [1, Lemma 3.1] to describe
the three types of elements of the spectrum.

(Modular forms) Let 𝐵ℓ (𝑞) be an orthogonal basis of the space of holomorphic cusp forms
of weight ℓ and level 𝑞, which dimension is denoted 𝜃ℓ (𝑞). We can write 𝑓 𝑗,ℓ for the ele-
ments of 𝐵ℓ (𝑞) and introduce their Fourier coefficients through the Fourier expansion

𝑓 𝑗,ℓ (𝑧) =
∑︁
𝑛⩾1

𝜓 𝑗,ℓ (𝑛) (4𝜋𝑛)ℓ/2𝑒 (𝑛𝑧). (2.16)

We say that 𝑓 is a Hecke eigenform if it is an eigenfunction of all the Hecke operators 𝑇𝑛
for (𝑛, 𝑞) = 1.
(Maass forms) Let 𝜆 𝑗 = 1

4 +𝜅
2
𝑗 be the eigenvalues of the hyperbolic Laplacian counted with

multiplicities and in increasing order, in the space of cusp forms on 𝐿2(Γ0(𝑞)\H). By con-
vention, choose the sign of 𝜅 𝑗 such that 𝜅 𝑗 ⩾ 0 when 𝜆 𝑗 ⩾ 1

4 and 𝑖𝜅 𝑗 > 0 when 𝜆 𝑗 < 1
4 . For

each positive 𝜆 𝑗 , choose a corresponding eigenvector𝑢 𝑗 in such a way that the family (𝑢 𝑗 ) 𝑗
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forms an orthonormal system, and define the associated Fourier coefficients 𝜌 𝑗 (𝑚) by the
Fourier expansion

𝑢 𝑗 (𝑧) =
∑︁
𝑚≠0

𝜌 𝑗 (𝑚)𝑊0,𝑖𝜅 𝑗 (4𝜋 |𝑛 |𝑦)𝑒 (𝑚𝑥), (2.17)

where𝑊0,𝑖𝑡 (𝑦) := (𝑦/𝜋)1/2𝐾𝑖𝑡 (𝑦/2) is a Whittaker function, and 𝐾𝑖𝑡 is the modified Bessel
function of the second kind. We call 𝑢 a Hecke eigenform if it is an eigenfunction of all
the Hecke operators 𝑇𝑛 for (𝑛, 𝑞) = 1, and we then denote by 𝜆𝑢 (𝑛) the Hecke eigenvalue
of 𝑢 for𝑇𝑛 . Writing 𝜌𝑢 (𝑛) as the Fourier coefficient, we have 𝜆𝑢 (𝑛)𝜌𝑢 (1) =

√
𝑛𝜌𝑢 (𝑛) when

(𝑛, 𝑞) = 1. When 𝑢 is a newform, this holds for all 𝑛 ≠ 0 instead.
(Einsenstein series) Let 𝔠 be a cusp for Γ0(𝑞). We define 𝜑𝔠 (𝑚, 𝑡) to be the 𝑚-th Fourier
coefficient of the real-analytic Eisenstein series at 1

2 + 𝑖𝑡 , i.e. by the Fourier expansion

𝐸𝔠 (𝑧, 1
2 + 𝑖𝑡) = 𝛿𝔠=∞𝑦

1
2+𝑖𝑡 + 𝜑𝔠 (0, 𝑡)𝑦

1
2−𝑖𝑡 +

∑︁
𝑚≠0

𝜑𝔠 (𝑚, 𝑡)𝑊0,𝑖𝑡 (4𝜋 |𝑛 |𝑦)𝑒 (𝑚𝑥). (2.18)

Proposition 4 (Kuznetsov trace formula). For 𝜙 : (0,∞) → C a smooth and compactly supported
function, and𝑚,𝑛, 𝑞 ⩾ 1, we have∑︁

𝑐⩾1
𝑞 |𝑐

𝑆 (𝑚,𝑛, 𝑐)
𝑐

𝜙

(
4𝜋

√
𝑚𝑛

𝑐

)
=

∑︁
ℓ∈2N+

1⩽ 𝑗⩽𝜃ℓ (𝑞)

(𝑙 − 1)!
√
𝑚𝑛 𝜓 𝑗,ℓ (𝑚)𝜓 𝑗,ℓ (𝑛)𝜙ℎ (ℓ) (2.19)

+
∑︁
𝑗

𝜌 𝑗 (𝑚)𝜌 𝑗 (𝑛)
√
𝑚𝑛

cosh𝜋𝜅 𝑗
𝜙+(𝜅 𝑗 ) (2.20)

+ 1
4𝜋

∑︁
𝔠

∫ +∞

−∞

√
𝑚𝑛

cosh𝜋𝑡
𝜑𝔠 (𝑚, 𝑡)𝜑𝔠 (𝑛, 𝑡)𝜙+(𝑡)𝑑𝑡, (2.21)

where the Bessel transforms are defined as by

𝜙+(𝑟 ) :=
2𝜋𝑖

sinh(𝜋𝑟 )

∫ ∞

0
(𝐽2𝑖𝑟 (𝜉) − 𝐽−2𝑖𝑟 (𝜉))𝜙 (𝜉)

𝑑𝜉

𝜉
(2.22)

𝜙ℎ (ℓ) := 4𝑖𝑘
∫ ∞

0
𝐽ℓ−1(𝜉)𝜙 (𝜉)

𝑑𝜉

𝜉
(2.23)

where 𝐽ℓ is the J-Bessel function of the first kind.

3. Moments

By the explicit formula (2.9), a critical quantity to understand in order to control the distribution
of the central values is the sums over primes 𝑃 (𝑓 , 𝑥), and this will be investigated by means of
the moment method as in [13]. The following result is the fundamental tool to understand their
distribution, and is an analogue of [9, Theorem 3.1].

Theorem 3 (Moment property). We have, for all ℓ ⩾ 0,

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)ℓ = (𝑀ℓ + 𝑜 (1)) (log log(𝑥))ℓ/2 (3.1)
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where we introduced the ℓ-th Gaussian moment

𝑀ℓ =
1

√
2𝜋

∫
R
𝑥 ℓ𝑒−𝑥

2/2𝑑𝑥 =
ℓ!

2ℓ/2(ℓ/2)!
. (3.2)

Remark 6. On average over the family, Theorem 3 states that moments of 𝑃 (𝑓 , 𝑥), i.e. essentially
the moments of log𝐿( 1

2 , 𝑓 ) +
1
2 log log𝑥 by the explicit formula (2.9), match the moments of the

normal distribution, hence justifying the shape of Conjecture 2 and of Theorem 2.

The remaining of this section as well as the following one constitute the proof of this result and
of two corollaries.

3.1. Sums over primes of coefficients. We follow the strategy of [13, Proposition 3] using the
tools developed in [9, Proposition 4.1], adapting it to the specific sum over primes 𝑃 (𝑓 , 𝑥) arising
in the explicit formula. After expanding the power 𝑃 (𝑓 , 𝑥)ℓ in

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)ℓ (3.3)

we are reduced to study sums of the type
1

𝑁 (𝑄)
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝𝑙⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑎 𝑓 (𝑝1) · · ·𝑎 𝑓 (𝑝ℓ)√
𝑝1 · · · 𝑝ℓ

. (3.4)

Inspired by the above expression of the expanded moment, we are led to decompose the summa-
tion by gathering primes that are equal. Introduce the notation, for any integer 𝛼 ⩾ 1 and prime
number 𝑝 ,

𝐹 (𝑝, 𝛼) :=
𝑎 𝑓 (𝑝)𝛼

𝑝𝛼/2 . (3.5)

We state in this section some first estimates for the sums over primes of such powers of coeffi-
cients. Informally, the sum for powers 𝛼 = 1 will be studied using the Perron formula and bounds
on 𝐿-functions, the contribution of the sum for powers 𝛼 = 2 will display a precise equivalent by
means of the Rankin-Selberg method and will determine the effective distribution in Theorem 2,
and the sum for higher powers 𝛼 ⩾ 3 will contribute negligibly.

Lemma 2 (Large parts). We have, for all 𝛼 ⩾ 3, and uniformly on 𝑓 ∈ 𝐻𝑘 (𝑞),∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 𝛼) ≪ 1. (3.6)

Proof. Using Deligne’s bound 𝑎 𝑓 (𝑝) ⩽ 2, the result follows since it reduces to the sum of 𝑝−3/2

which converges absolutely. □

Lemma 3 (2-parts). We have ∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 2) ≪ log log(𝑥), (3.7)

where the implied constant is absolute.
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Proof. The bound (3.7) is immediate by Deligne’s bound 𝑎 𝑓 (𝑝) ⩽ 2 and using Mertens’ estimate∑︁
𝑝⩽𝑥

1
𝑝
≪ log log(𝑥).

□

Lemma 4 (1-parts). We have, for all 𝑛 ⩾ 1 and all 𝑥 ⩽ 𝑞,∑︁
𝑝1,...,𝑝𝑛⩽𝑥

𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑛∏
𝑖=1

𝐹 (𝑝𝑖, 1) ≪ log(𝑞)𝑛+𝜀 . (3.8)

Proof. The result [9, Lemma 2.12] reads∑︁
𝑝⩽𝑥
𝑝∤𝑞

(
𝑏 𝑓 (𝑝) :=

𝑎 𝑓 (𝑝) log(𝑝)
𝑝1/2

)
≪ log(𝑥)1+𝜀 log(𝑞) (3.9)

and by partial summation, we therefore deduce∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝑎 𝑓 (𝑝)
𝑝1/2 =

∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝑏 𝑓 (𝑝)
log𝑝

≪
∑︁
𝑝⩽𝑥
𝑝∤𝑞

����� ∑︁
𝑝′⩽𝑝
𝑝′∤𝑞

𝑏 𝑓 (𝑝′)
����� 1
𝑝 log2 𝑝

≪ log(𝑞)1+𝜀
∑︁
𝑝⩽𝑥
𝑝∤𝑞

1
𝑝 log𝑝

≪ log(𝑞)1+𝜀 (3.10)

giving the desired result for 𝑛 = 1. We finish the proof inductively for 𝑛 ⩾ 1, adding back the
missing primes in order to get a genuine product, which incur an extra contribution of negligible
size by the two above lemmas, since it is made of higher powers. □

Remark 7. The proof of [9, Lemma 2.12] boils down to using the Perron formula to relate the
sought sum to 𝐿′/𝐿, on which we have bounds that are enough for the result. Note that these
"rough" bounds on the 1-parts and 2-parts will not be sufficient to bound the whole sum over the
family, since the expected main term in Theorem 3 is of size log log𝑥 while the above bounds are
about log𝑥 and log log𝑥 . The harmonic average (in the guise of trace formulas) or finer properties
of 𝐿-functions will have to be fully exploited in order to get enough cancellations. These bounds
will however be sufficient to address number of cases and remains fundamental in the proofs.

The next paragraphs of this section are devoted to prove finer estimates for the 2-parts (see Propo-
sition 5) and to prepare the stage to estimating the 1-parts.

3.2. A Rankin bound. We need a finer and genuine asymptotics for the 2-part, since it will
ultimately contribute as the main term. We have the following statement, which is the standard
Rankin bound with emphasis on the unformity of the error term in the function 𝑓 — and where
we use the generalized Riemann hypothesis.

Proposition 5. For all 𝑓 ∈ 𝐻𝑘 (𝑞), for all 𝑥 < 𝑐 (𝑓 ) ⩽ 𝑄 , and assuming that 𝐿(𝑠, sym2𝑓 ) has no
zeros in the rectangle {𝑧 : 𝜎0 ⩽ Re(𝑧) ⩽ 1, |Im(𝑧) − 𝑡 | ⩽ 3}, we have∑︁

𝑝<𝑥
𝑝∤𝑞

𝜆𝑓 (𝑝)2

𝑝
= log log𝑥 +𝑂 (log log log 𝑐 (𝑓 )), (3.11)
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where the implied constant is absolute.

The remaining of Section 3.2 is dedicated to the proof of this result.

We start adding back the missing primes and use Deligne’s bound 𝜆(𝑝) ≪ 1 to control the in-
curred error. We need the following estimate.

Lemma 5. For all 𝑥 ⩽ 𝑞, we have ∑︁
𝑝⩽𝑥
𝑝 |𝑞

1
𝑝
≪ log log log𝑞, (3.12)

for 𝑥 ⩽ 𝑞.

Proof. Let 𝜔 (𝑞) be the number of distinct prime divisors of 𝑞, and write the prime factorization
of 𝑞 as 𝑞 = 𝑝

𝛼1
1 𝑝

𝛼2
2 · · · 𝑝𝛼𝑘

𝑘
, where each 𝑝𝑛 is a prime factor of 𝑞 ordered so that 𝑝1 < 𝑝2 < · · · < 𝑝𝑘

and 𝑘 = 𝜔 (𝑞). Then

log𝑞 =

𝑘∑︁
𝑛=1

𝛼𝑛 log𝑝𝑛 ⩾ 𝑘 log 2 = (log 2)𝜔 (𝑞) (3.13)

so that 𝜔 (𝑞) ≪ log𝑞. Since 𝑝𝑛 ≍ 𝑛 log𝑛 by a classical estimate dating back to Chebyshev — we
more precisely know that 𝑝𝑛 ∼ 𝑛 (log𝑛 + log log𝑛 − 1) by Dusart [3] — we deduce

𝑝𝜔 (𝑞) ≪ 𝜔 (𝑞) log𝜔 (𝑞) ≪ log(𝑞) log log(𝑞). (3.14)

We therefore deduce ∑︁
𝑝⩽𝑥
𝑝 |𝑞

1
𝑝
≪

𝜔 (𝑞)∑︁
𝑛=1

1
𝑝𝑛

∼ log log(𝑝𝜔 (𝑞)) ≪ log log log(𝑞) (3.15)

by Mertens estimate on the sum over reciprocals of primes. □

The problem therefore reduces to estimating∑︁
𝑝<𝑥
𝑝∤𝑞

𝜆(𝑝)2

𝑝
⇝

∑︁
𝑝<𝑥

𝜆(𝑝)2

𝑝
. (3.16)

We use the Hecke relation 𝜆(𝑝)2 = 𝜆(𝑝2) + 1, and use Mertens estimate∑︁
𝑝<𝑥

1
𝑝
= log log𝑥 +𝑂 (1). (3.17)

with an absolute error term. Therefore at a cost log log𝑥 , which will remain as the main term in
Theorem 2, we are reduced to study∑︁

𝑝<𝑥

𝜆(𝑝)2

𝑝
⇝

∑︁
𝑝<𝑥

𝜆(𝑝2)
𝑝

. (3.18)

We follow here the same strategy of [9, Lemma 2.11]. We start by a bound on 𝐿-functions.
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Lemma 6. Let 𝑠 = 𝜎 +𝑖𝑡 with 𝜎 > 1
2 and |𝑡 | ⩽ 3𝑐 (𝑓 ). Let 𝜎0 ∈ (1/2, 𝜎). Suppose 𝐿(𝑠, 𝑓 ) has no zeros

in the rectangle {𝑧 : 𝜎0 ⩽ Re(𝑧) ⩽ 1, |Im(𝑧) − 𝑡 | ⩽ 3} (in particular this is true for all 𝜎0 > 1/2
under the Generalized Riemann Hypothesis). Then we have, uniformly in 𝑓 ,

log𝐿(𝑠, 𝑓 ) ≪ log 𝑐 (𝑓 )
𝜎 − 𝜎0

. (3.19)

Proof. For 𝜎 > 2, then we have log𝐿(𝑠, 𝑓 ) ≪ 1 uniformly in 𝑓 , by Deligne’s bound 𝑎 𝑓 (𝑛) ≪ 1
and by absolute convergence.

Assume 𝜎 < 2 and follow the strategy of Granville-Soundararajan [4]; they prove the analogous
result for Dirichlet 𝐿-functions, but the result is general as used for instance in [2]. Consider
circles of center 2 + 𝑖𝑡 and radii 𝑟 := 2 − 𝜎 , so that they pass through 𝑠 . On the larger circle of
radius 𝑅 := 2 − 𝜎0, we have for all 𝑧 on the circle,

𝐿(𝑧, 𝑓 ) ≪ 𝑐 (𝑓 ) |𝑧 | ≪ 𝑐 (𝑓 )2. (3.20)

This follows from convexity bounds [16, Lemma 6.7 and Theorem 6.8], which states that 𝐿-values
in the critical strip are bounded by 𝐿(𝑧, 𝑓 ) ≪ (|𝑧 |2𝑐 (𝑓 )2)1−𝜎 for all 𝜎 ∈ (0, 1), uniformly in 𝑓 . We
get the claimed bound, for 𝜎 ∈ (1/2, 1), the worst case being 𝜎 = 1/2.

For 𝑠 in the rectangle {𝑧 : 𝜎0 ⩽ Re(𝑧) ⩽ 1, |Im(𝑧) − 𝑡 | ⩽ 3}, we use the Borel-Carathéodory
theorem to obtain

| log𝐿(𝑠, 𝑓 ) | ⩽ 2𝑟
𝑅 − 𝑟 max

|𝑧−(2+𝑖𝑡) |=𝑅
Re log𝐿(𝑧, 𝑓 ) + 𝑅 + 𝑟

𝑅 − 𝑟 | log𝐿(2 + 𝑖𝑡, 𝑓 ) | ≪ log 𝑐 (𝑓 )
𝜎 − 𝜎0

+ 1
𝜎 − 𝜎0

which is as desired. □

Assuming strong zero-free regions, typically implied by the generalized Riemann hypothesis, we
can approximate 𝐿-functions by short sums of coefficients, with an error term depending on the
chosen length. The following lemma makes it precise.

Lemma 7. Let 𝑠 = 𝜎+𝑖𝑡 with 𝜎 > 1/2 and |𝑡 | ⩽ 2𝑐 (𝑓 ). Let𝑦 ⩾ 2 a real parameter and 𝜎0 ∈ (1/2, 𝜎).
Suppose there are no zeros of 𝐿(𝑧, 𝑓 ) in the rectangle {𝑧 : 𝜎0 ⩽ Re(𝑧) ⩽ 1, |Im(𝑧) − 𝑡 | ⩽ 𝑦 + 3}.
Let 𝜎1 = min( 1

2 (𝜎 + 𝜎0), 𝜎0 + 1/log(𝑦)). We then have

log𝐿(𝑠, 𝑓 ) =
𝑦∑︁
𝑛=2

Λ(𝑛)𝑎 𝑓 (𝑛)
𝑛𝑠 log𝑛

+𝑂
(

log 𝑐 (𝑓 )
(𝜎1 − 𝜎0)2𝑦

𝜎1−𝜎
)
, (3.21)

where the implied constant is independent of 𝑓 .

Proof. By the truncated Perron formula given in [11, Corollary 5.3] or [10, Example 4.4.15], we
can express the above short sum by a vertical integral of the 𝐿-function. For 𝑐 = 1 − 𝜎 + 1/log𝑦,
since 𝐿(𝑠, 𝑓 ) is entire, we have

1
2𝜋𝑖

∫ 𝑐+𝑖𝑦

𝑐−𝑖𝑦
log𝐿(𝑠 +𝑤, 𝑓 )𝑦

𝑤

𝑤
𝑑𝑤 =

𝑦∑︁
𝑛=2

Λ(𝑛)𝑎 𝑓 (𝑛)
𝑛𝑠 log𝑛

+𝑂
(

1
𝑦

∑︁
𝑛⩾1

𝑦𝑐

𝑛𝜎+𝑐
1

| log(𝑦/𝑛) |

)
(3.22)

=

𝑦∑︁
𝑛=2

Λ(𝑛)𝑎 𝑓 (𝑛)
𝑛𝑠 log𝑛

+𝑂 (𝑦−𝜎 log𝑦) . (3.23)
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We can on the other hand move the integration line from Re = 𝑐 to Re = 𝜎1 − 𝜎 < 0. We exactly
assumed that there are no zero in the rectangle thus crossed, i.e. we bump into no singularities,
except𝑤 = 0 where there is a simple pole with residue log𝐿(𝑠, 𝑓 ). The remaining integrals after
picking up this 𝐿-value are three segments of the form∫

log𝐿(𝑠 +𝑤, 𝑓 )𝑦
𝑤

𝑤
𝑑𝑤, (3.24)

on the segments [𝑐±𝑖𝑦, 𝜎1−𝜎±𝑖𝑦] and [𝜎1−𝜎±𝑖𝑦]. By the previous Lemma 6 and the assumptions
on Re(𝑤) ⩾ 𝜎1 − 𝜎 , these integrals are bounded by

≪
∫

log 𝑐 (𝑓 )
𝜎 + Re(𝑤) − 𝜎0

𝑦𝑤

𝑤
𝑑𝑤 ≪ log 𝑐 (𝑓 )

(𝜎1 − 𝜎0)2𝑦
𝜎1−𝜎 . (3.25)

This recovers [2, Lemma 4.3] — unproven there — and ends the proof of the lemma. □

We can now instantiate that with suitable choices of variables to obtained the desired bound:

Lemma8. Let𝜂 > 2(log 𝑐 (𝑓 ))−1. Assume that 𝐿(𝑠, 𝑓 ) has no zeros in the rectangleRe(𝑠) ∈ [1−𝜂, 1]
and |Im(𝑠) | ⩽ log10/𝜂𝑐 (𝑓 ) — this is for instance true with any 0 < 𝜂 < 1/2 when assuming the
Generalized Riemann Hypothesis. Then

log𝐿(𝑠, 𝑓 ) ≪ log log log 𝑐 (𝑓 ) (3.26)

uniformly for Re(𝑠) ⩾ 1 − 1/log2 𝑐 (𝑓 ) and |Im(𝑠) | ⩽ log10 𝑐 (𝑓 ).

Proof. Apply the above with 𝜎0 = 1 − 𝜂, 𝜎 = Re(𝑠) ⩾ 1 − 1/log2 𝑐 (𝑓 ), and 𝜎 − 𝜎0 ⩾ 𝜎 − 𝜎1 ⩾ 𝜂/2.
Choose the value 𝑦 = log10/𝜂𝑐 (𝑓 ). Use Deligne’s bounds |Λ𝑓 (𝑝𝛼 ) | ≪ log𝑝 to remove higher
powers of primes in the sum, corresponding to a bounded contribution, and get

| log𝐿(𝑠, 𝑓 ) | ⩽
����� 𝑦∑︁
𝑝=2

Λ(𝑝)𝑎 𝑓 (𝑝)
𝑝𝑠 log𝑝

����� +𝑂 (1) ≪
log10/𝜂𝑐 (𝑓 )∑︁

𝑝=2

1
𝑝1−1/log2 𝑐 (𝑓 )

≪ log log log 𝑐 (𝑓 ). (3.27)

This is the claimed result. □

We obtain Proposition 5 by using this lemma at 𝑠 = 1 and Perron formula in order to relate the
sum of coefficients to 𝐿(1, sym2𝑓 ). By averaging Proposition 5 over the family, we obtain the
following estimate for the 2-parts.

Corollary 1. Assume the Generalized Riemann Hypothesis for 𝐿(𝑠, sym2𝑓 ). For all 𝑄𝛿 ≪ 𝑥 ≪ 𝑄 ,
we have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 2) = log log𝑥 +𝑂 (log log log𝑥) (3.28)

where the implied constant is absolute.
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3.3. Case splitting and reduction to powers one. Recalling the definition of 𝐹 (𝑝, 𝑎), the ex-
pression (3.4) splits into sums of the type

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖) (3.29)

so that it is sufficient to study these. We split into different cases according to the number of
conspiring primes (i.e. the size of the powers 𝛼𝑖 ), and use the lemmas established in Section 3.1
to treat each part. Define the following cases:

Case A — each power 𝛼𝑖 is 2;
Case B — each power is at least 2, at least one is larger;
Case C — at least one power is 1, but not all;
Case D — each power is 1.

To prove Theorem 3, we proceed by induction on the number of terms ℓ in the product. The
remainder of Section 3.3 is dedicated to treating the cases A, B and C or to reduce them to case D,
which will be addressed in Section 4.

Case A: each power is 2. By the estimate of Lemma 1, we have∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 2) =
∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝑎 𝑓 (𝑝)2

𝑝
= log log(𝑥) +𝑂 (log log log 𝑐 (𝑓 )), (3.30)

which corresponds to the situation ℓ = 1 in Case A.

Let ℓ ⩾ 1 and assume inductively that for all 𝑙 = 1, 2, . . . , ℓ , we have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝𝑙⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑙∏
𝑖=1

𝐹 (𝑝𝑖, 2) = (log log(𝑥))𝑙 + 𝑜 ((log log(𝑥))𝑙 ). (3.31)

We will prove the corresponding property for ℓ + 1. Adding back the missing primes in order to
complete one of the sums over the primes 𝑝 = 𝑝ℓ+1, we get∑︁

𝑝1,...,𝑝ℓ+1⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ+1∏
𝑖=1

𝐹 (𝑝𝑖, 2) =
∑︁

𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 2)
∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝑝≠𝑝𝑖 , 1⩽𝑖⩽ℓ

𝐹 (𝑝, 2)

=

( ∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 2)
) (∑︁

𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 2)
)
− ℓ

( ∑︁
𝑝2,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=2

𝐹 (𝑝𝑖, 2)
) (∑︁

𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 4)
)
. (3.32)

By Lemma 2, the sum including 𝐹 (𝑝, 4) in (3.32) is uniformly bounded, so that the rightmost term
in (3.32) falls into the induction hypothesis and is bounded by (log log(𝑥))ℓ = 𝑜 (log log(𝑥))ℓ+1.
In the left term of (3.32), we average over the family and use Hölder inequality as in [9], as well
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as induction to conclude it is equivalent to log log(𝑥)ℓ+1, proving the case for ℓ + 1 and finishing
the proof by induction. Thus

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ+1⩽𝑥

𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 2) ∼ (log log(𝑥))ℓ (3.33)

for any ℓ ∈ N★ by induction.

Case B: each power is at least 2, at least one being larger than 2. By Lemma 2, we have∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 𝑎) = 𝑂 (1) (3.34)

whenever 𝑎 ⩾ 3, the underlying constant being absolute. Equation (3.34) immediately implies
that this holds on average over the family, in particular

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝⩽𝑥
𝑝∤𝑞

𝐹 (𝑝, 𝑎) = 𝑜 (log log(𝑥)) .

Let ℓ ⩾ 1 and assume inductively that for all 𝑙 = 1, 2, . . . , ℓ , we have∑︁
𝑝1,...,𝑝𝑙⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑙∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖) = 𝑜 ((log log(𝑥))𝑙 ), (3.35)

where 𝛼𝑖 ⩾ 2 for all 𝑖 = 1, 2, . . . , 𝑙 , and there is at least one 𝑗 ∈ {1, 2, . . . , 𝑙} such that 𝛼 𝑗 ⩾ 3. We
address the case of ℓ +1 factors. Reordering such that at least one 𝑗 ∈ {1, 2, . . . , ℓ} satisfies 𝛼 𝑗 ⩾ 3,
and adding the missing primes in order to complete the sum over primes 𝑝ℓ+1, we can write∑︁

𝑝1,...,𝑝ℓ+1⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ+1∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖) =
∑︁

𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖)
∑︁
𝑝ℓ+1⩽𝑥
𝑝ℓ+1∤𝑞

𝑝ℓ+1≠𝑝𝑖 , 1⩽𝑖⩽ℓ

𝐹 (𝑝ℓ+1, 𝛼ℓ+1),

=

( ∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖)
) ( ∑︁

𝑝ℓ+1⩽𝑥
𝑝ℓ+1∤𝑞

𝐹 (𝑝ℓ+1, 𝛼ℓ+1)
)

(3.36)

−
ℓ∑︁

𝑚=1

( ∑︁
𝑝1,...,𝑝𝑚−1,𝑝𝑚+1,...,𝑝ℓ⩽𝑥

𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1
𝑖≠𝑚

𝐹 (𝑝𝑖, 𝛼𝑖)
) ( ∑︁

𝑝ℓ+1⩽𝑥
𝑝ℓ+1∤𝑞

𝐹 (𝑝ℓ+1, 𝛼ℓ+1 + 𝛼𝑚)
)
, (3.37)

Examining (3.37), since 𝛼ℓ+1 + 𝛼𝑚 ⩾ 3, we can use the bound given by Lemma 2 to conclude that
the corresponding sum is uniformly bounded; the induction hypothesis therefore applies (𝛼 𝑗 ⩾ 3)
to the other factor in (3.37) and allows to conclude. Examining (3.36), since 𝛼ℓ+1 ⩾ 2, we have
that the sum over 𝑝ℓ+1 is uniformly bounded by log log𝑥 by Lemma 3; the induction hypothesis
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therefore applies to the first factor in (3.36) and allows to conclude that the whole expression is
𝑜 (log log(𝑥)ℓ+1). This concludes the induction for Case B, and we have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖) = 𝑜
(
(log log(𝑥))ℓ

)
for any ℓ ∈ N★.

Case C: at least one power is 1, but not all. Wenow reduce Case C to Case D appealing to induction.
Let ℓ ⩾ 2. We assume inductively that, for all 𝑙 = 2, . . . , ℓ such that at least one power 𝛼𝑖 ⩾ 2, we
have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝𝑙⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑙∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖)

≪ (log log(𝑥))𝑙−𝑛𝑙
𝑁 (𝑄)

�����∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝𝑛𝑙⩽𝑥

𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑛𝑙∏
𝑖=1

𝐹 (𝑝𝑖, 1)
�����.

(3.38)

where 𝑛𝑙 := #{ 𝑗 = 1, 2, . . . , 𝑙 | 𝛼 𝑗 = 1} and we ordered the 𝛼𝑖 ’s so that 𝛼1 = 𝛼2 = · · · = 𝛼𝑛𝑙 = 1
and 𝛼𝑛𝑙+1, 𝛼𝑛𝑙+2, . . . , 𝛼𝑙 ⩾ 2. Adding the missing primes to complete the sum over 𝑝ℓ+1, we have∑︁

𝑝1,...,𝑝ℓ+1⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ+1∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖) =
∑︁

𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖)
∑︁
𝑝ℓ+1⩽𝑥
𝑝ℓ+1∤𝑞

𝑝ℓ+1≠𝑝𝑖 , 1⩽𝑖⩽ℓ

𝐹 (𝑝ℓ+1, 𝛼ℓ+1)

=

( ∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 𝛼𝑖)
) ( ∑︁

𝑝ℓ+1⩽𝑥
𝑝ℓ+1∤𝑞

𝐹 (𝑝ℓ+1, 𝛼ℓ+1)
)

(3.39)

−
ℓ∑︁

𝑚=1

( ∑︁
𝑝1,...,𝑝𝑚−1,𝑝𝑚+1,...,𝑝ℓ⩽𝑥

𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1
𝑖≠𝑚

𝐹 (𝑝𝑖, 𝛼𝑖)
) ( ∑︁

𝑝ℓ+1⩽𝑥
𝑝ℓ+1∤𝑞

𝐹 (𝑝ℓ+1, 𝛼ℓ+1 + 𝛼𝑚)
)

(3.40)

The sum of 𝐹 (𝑝ℓ+1, 𝛼ℓ+1) in (3.39) is uniformly dominated by log log(𝑥) by Lemma 3 since𝛼ℓ+1 ⩾ 2.
The sum of 𝐹 (𝑝ℓ+1, 𝛼ℓ+1 + 𝛼𝑚) in (3.40) is uniformly bounded by Lemma 2 since 𝛼ℓ+1 + 𝛼𝑚,⩾ 3.
The multiple sums of 𝐹 (𝑝𝑖, 𝛼𝑖) in (3.39) and (3.40) either contain a term 𝛼𝑖 ⩾ 2, in which case we
appeal to the induction hypothesis, or only contain terms 𝛼𝑖 = 1, which is Case D. This completes
the induction reducing Case C to Case D.

4. Case D and conseqences

The above sections reduced the proof of Theorem 3 to the proof of case D, where each power
is 𝛼𝑖 = 1. We treat this case and deduce important consequences from this result.
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4.1. First moment of coefficients. This case is the most difficult and requires to make use of
the harmonic sum over the family, i.e. trace formulas. We have to prove the following bound on
the 1-parts to prove they contribute as an error term:

Proposition 6. For all ℓ ⩾ 1, we have

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

ℓ∏
𝑖=1

𝐹 (𝑝𝑖, 1) = 𝑜
(
(log log(𝑥))ℓ/2

)
. (4.1)

The proof uses different mechanics than [13] for quadratic twists of elliptic curves, since they
instead use Poisson summation formula for the sum of characters, since they have complete mul-
tiplicativity. We closely follow the strategy of [1], who proved the analogous result with different
weights for a single prime, and apply induction as in [9]. The rest of this section is dedicated to
the proof of this result.

UsingHeckemultiplicativity formodular coefficients, we rewrite𝑎 𝑓 (𝑝1) · · ·𝑎 𝑓 (𝑝ℓ) = 𝑎 𝑓 (𝑝1 · · · 𝑝ℓ)
since the primes are different. We are therefore reduced to study the sum

Σ :=
1

𝑁 (𝑄)
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖∤𝑞
𝑝𝑖≠𝑝 𝑗

𝑎 𝑓 (𝑝1 · · · 𝑝ℓ)√
𝑝1 · · · 𝑝ℓ

. (4.2)

The harmonic sum has to be exploited by means of trace formulas. However, trace formulas, viz.
the Petersson trace formula here, can be used for sums over all the modular forms of a given
weight and level, not only over newforms as in (4.1). It is therefore necessary to add back the
missing oldforms in the sum. Using Lemma 1to do so and swapping summations in (4.1), we
obtain

Σ =
1

𝑁 (𝑄)
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁
𝑝1,...,𝑝ℓ⩽𝑥
𝑝𝑖≠𝑝 𝑗
𝑝𝑖∤𝑞

1
√
𝑝1 · · · 𝑝ℓ

∑︁
𝑞=𝐿1𝐿2𝑑
𝐿1 |𝑞1
𝐿2 |𝑞2

𝜇 (𝐿1𝐿2)
𝐿1𝐿2

∏
𝑝 |𝐿1
𝑝2∤𝑑

(1 − 𝑝−2)−1
∑︁
𝑒 |𝐿∞2

Δ𝑑 (𝑒2, 𝑝1 · · · 𝑝ℓ)
𝑒

.

We truncate the summations over 𝐿1, 𝐿2 and over 𝑒 . Consider the tail of the sum, for 𝐿1𝐿2 > 𝐿0,
and use the trivial estimate given in Lemma 4 to bound the tail of Σ by (using that 𝑁 (𝑄) ≍ 𝑄 by
standard dimension formulas)

1
𝑄

∑︁
𝐿1𝐿2>𝐿0

1
𝐿1𝐿2

Ψ

(
𝐿1𝐿2𝑑

𝑄

) ∑︁
𝑒 |𝐿∞2

𝜏 (𝑒2)
𝑒

������ ∑︁ℎ

𝑓 ∈𝐵𝑘 (𝑞)

∑︁
𝑝1,...,𝑝ℓ⩽𝑥

𝑎 𝑓 (𝑝1 · · · 𝑝ℓ)√
𝑝1 · · · 𝑝ℓ

������ (4.3)

≪ log𝑄
𝑄

∑︁
𝑞≪𝑄/𝐿0

𝜏 (𝐿2)
𝐿1𝐿2

Ψ

(
𝐿1𝐿2𝑑

𝑄

)
≪ log𝑄

𝑄

∑︁
𝑞≪𝑄/𝐿0

log(𝑄)ℓ ≪ log(𝑄)ℓ+1

𝐿0
(4.4)

so that we get an error term of constant size for any 𝐿0 > log(𝑄)ℓ+1. We can bound roughly the
sum for 𝐿1𝐿2 < 𝐿0 but 𝑒 > 𝐸 and get an error of constant size so long as 𝐸 is not less than a power
of log(𝑄). We therefore can restrict the sums from now on to these ranges 𝐿1𝐿2 < 𝐿0 and 𝑒 < 𝐸

for 𝐸 a certain power of log(𝑄), as in [1]. As in the above sections, we can add the sum over

17



primes dividing the level, i.e. 𝑝𝑖 | 𝑞, at a cost log log log𝑞, therefore getting a saving even without
exploiting the summation over the family. We are therefore reduced to deal with Σ = Σ2 +𝑂 (1)
where

Σ2 :=
1

𝑁 (𝑄)
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁
𝑝𝑖≠𝑝 𝑗

1
√
𝑝1 · · · 𝑝ℓ

∑︁
𝑞=𝐿1𝐿2𝑑
𝐿1𝐿2<𝐿0
𝐿1 |𝑞1
𝐿2 |𝑞2

𝜇 (𝐿1𝐿2)
𝐿1𝐿2

∏
𝑝 |𝐿1
𝑝2∤𝑑

(1 − 𝑝−2)−1
∑︁
𝑒 |𝐿∞2
𝑒<𝐸

Δ𝑑 (𝑒2, 𝑝1 · · · 𝑝ℓ)
𝑒

. (4.5)

We now perform a more precise arithmetic parametrization of the summation, following [1].
Recalling that 𝑞 = 𝐿1𝐿2𝑑 , we replace the conditions 𝐿𝑖 | 𝑞𝑖 by 𝐿1 | 𝑑 , (𝐿2, 𝑑) = 1, and 𝑑 = 𝐿1𝑚 as
in [1, Remark following Lemma 2.3]. This in particular implies∏

𝑝1 |𝐿1
𝑝2

1∤𝑑

(1 − 𝑝−2)−1 =
∏
𝑝 |𝐿1

(1 − 𝑝−2)−1
∏

𝑟 | (𝐿1,𝑚)

𝜇 (𝑟 )
𝑟 2 . (4.6)

We therefore have 𝑞 = 𝐿2
1𝐿2𝑚 where (𝑚, 𝐿2) = 1, and write𝑚 = 𝑟𝑛 since 𝑟 | 𝑚. We altogether

have

Σ2 =
1

𝑁 (𝑄)
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁
𝑝𝑖≠𝑝 𝑗

1
√
𝑝1 · · · 𝑝ℓ

∑︁
𝑞=𝐿2

1𝐿2𝑟𝑛
𝐿1𝐿2<𝐿0

(𝐿1𝑟𝑛,𝐿2)=1

𝜇 (𝐿1𝐿2)
𝐿1𝐿2

(4.7)

×
∏
𝑝1 |𝐿1

(1 − 𝑝−2)−1
∏

𝑟 | (𝐿1,𝑟𝑛)

𝜇 (𝑟 )
𝑟 2

∑︁
𝑒 |𝐿∞2
𝑒<𝐸

Δ𝑑 (𝑒2, 𝑝1 · · · 𝑝ℓ)
𝑒

. (4.8)

By Petersson trace formula from Proposition 3, noting that 𝑒2 ≠ 𝑝1 · · · 𝑝ℓ since the primes are
assumed to be all different, we get

Δ𝑑 (𝑒2, 𝑝1 · · · 𝑝ℓ) = 2𝜋𝑖−𝑘
∑︁
𝑐⩾1

𝑆 (𝑒2, 𝑝1 · · · 𝑝ℓ , 𝑐𝐿1𝑟𝑛)
𝑐𝐿1𝑟𝑛

𝐽𝑘−1

(
4𝜋

√︁
𝑒2𝑝1 · · · 𝑝ℓ
𝑐𝐿1𝑟𝑛

)
.

Using Möbius inversion to detect the condition (𝐿2, 𝑛) = 1, we can rephrase Σ2 as

Σ2 =
2𝜋𝑖−𝑘

𝑁 (𝑄)
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁
𝐿1𝐿2<𝐿0
(𝐿1,𝐿2)=1

𝜇 (𝐿1𝐿2)
𝐿1𝐿2

∏
𝑝 |𝐿1

(1 − 𝑝−2
1 )−1

∑︁
𝑝1,...,𝑝ℓ
𝑝𝑖≠𝑝 𝑗

1
√
𝑝1 · · · 𝑝ℓ

∑︁
𝑒 |𝐿∞2
𝑒<𝐸

1
𝑒

×
∑︁
𝑐⩾1

∑︁
𝑛⩾1

∑︁
𝑑 |𝐿2

𝜇 (𝑑)
∑︁
𝑟 |𝐿1

𝜇 (𝑟 )
𝑟 2

𝑆 (𝑒2, 𝑝1 · · · 𝑝ℓ , 𝑐𝐿1𝑑𝑛𝑟 )
𝑐𝐿1𝑛𝑟𝑑

Ψ

(
𝐿2

1𝐿2𝑛𝑟𝑑

𝑄

)
𝐽𝑘−1

(
4𝜋

√︁
𝑒2𝑝1 · · · 𝑝ℓ
𝑐𝐿1𝑛𝑟𝑑

)
.

Noting 𝔪 := 𝑐𝐿1𝑑𝑛𝑟 ≡ 0 modulo 𝑐𝐿1𝑟𝑑 , we get that the sum over 𝑛 is∑︁
𝔪≡0(𝑐𝐿1𝑑𝑟 )

𝑆 (𝑒2, 𝑝1 · · · 𝑝ℓ ,𝔪)
𝔪

𝑓

(
4𝜋

√︁
𝑒2𝑝1 · · · 𝑝ℓ
𝔪

)
, (4.9)
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where we introduced

𝑓 (𝜉) := Ψ

(
2𝜋

√︁
𝑒2𝑝1 · · · 𝑝ℓ𝐿1𝐿2

𝑐𝑄𝜉

)
𝐽𝑘−1(𝜉). (4.10)

Smoothly dyadically cut the sums over 𝑝𝑖 into blocks of size 𝑝𝑖 ≍ 𝑃𝑖 , inputing a smooth partition
of unity 𝑉 such that

∑
𝑉 (𝑝𝑖/𝑃𝑖) = 1 for all 𝑖 ∈ {1, . . . , ℓ}. We then recognize the function as

𝑓 (𝜉) = 𝐻
(
𝜉,

𝑝

𝑝1 · · · 𝑝ℓ

)
𝐽𝑘−1(𝜉), (4.11)

where

𝐻 (𝜉, 𝜆) := Ψ

(
𝑋

𝜉

√
𝜆

)
with 𝑋 =

4𝜋𝐿1𝐿2
√︁
𝑝1 · · · 𝑝ℓ𝑒2

𝑐𝑄
. (4.12)

We can then followmutatis mutandis the proof of [1, Lemma 6.1] to deduce from the smoothness
and the compact support of Ψ that the R2-Fourier transform of 𝐻 is rapidly decaying, viz.

𝐻 (𝑢, 𝑣) ≪𝐴 ((1 + |𝑢 |) (1 + |𝑣 |))−𝐴, (4.13)

for all 𝐴 ⩾ 1, by repeatedly integrating by parts. By Fourier inversion, we therefore have

𝑓 (𝜉) = 𝐽𝑘−1(𝜉)𝑊
(
𝜉

𝑋

) ∬
R2
𝐻 (𝑢, 𝑣)𝑒 (𝑢𝜉 + 𝑣 𝑝

𝑃
)𝑑𝑢𝑑𝑣 . (4.14)

Inserting it in the above expression for Σ2, we get

Σ2 =
2𝜋𝑖−𝑘

𝑁 (𝑄)
∑︁

(𝐿1,𝐿2)=1
𝐿1𝐿2<𝐿0

𝜇 (𝐿1𝐿2)
𝐿1𝐿2

∏
𝑝 |𝐿1

(1 − 𝑝−2)−1
∑︁
𝑟 |𝐿1

𝜇 (𝑟 )
𝑟 2

∑︁
𝑑 |𝐿2

𝜇 (𝑑)
∑︁

𝑃𝑖 ,dyadic
(4.15)

∑︁
𝑒 |𝐿∞2
𝑒<𝐸

1
𝑒

∬
R2
𝐻 (𝑢, 𝑣)

∑︁
𝑐⩾1

∑︁
𝑝𝑖≠𝑝 𝑗

1
√
𝑝1 · · · 𝑝ℓ

ℓ∏
𝑖=1

𝑉

(
𝑝𝑖

𝑃𝑖

)
𝑒

(
𝑣
𝑝𝑖

𝑃𝑖

)
𝑆 (𝑢, 𝑝1 · · · 𝑝ℓ)𝑑𝑢𝑑𝑣, (4.16)

where we let

𝑆 (𝑢, 𝑝) :=
∑︁
𝑛⩾1

𝑆 (𝑒2, 𝑝, 𝑐𝐿1𝑟𝑑𝑛)
𝑐𝐿1𝑟𝑑𝑛

ℎ𝑢

(
4𝜋

√︁
𝑝𝑒2

𝑐𝐿1𝑟𝑑𝑛

)
(4.17)

with ℎ𝑢 (𝑥) =𝑊 (𝑥/𝑋 ) 𝐽𝑘−1(𝑥)𝑒 (𝑢𝑥) where𝑊 is a plateau function taking value 1 on the effective
range of summation. This expression 𝑆 (𝑢, 𝑝) exactly appears as an arithmetic side of a Kuznetsov
trace formula, with the new level 𝑐𝐿1𝑟𝑑 . By the Kuznetsov trace formula from Proposition 4, the
innermost sums can be rephrased as∑︁

𝑐⩾1

∑︁
𝑝𝑖

ℓ∏
𝑖=1

1
√
𝑝𝑖
𝑒

(
𝑐
𝑝𝑖

𝑃𝑖

)
𝑉

(
𝑝𝑖

𝑃𝑖

)
[D(𝑐,𝔭, 𝑢) + C(𝑐,𝔭, 𝑢) + H (𝑐,𝔭, 𝑢)] , (4.18)

where 𝔭 = 𝑝1 · · · 𝑝ℓ and D, C and H stand for the discrete, continuous and holomorphic contri-
butions from the spectral side respectively. Recall that they are explicitly defined by

D(𝑐, 𝑝,𝑢) =
∑︁
𝑗

𝛼 𝑗 (𝑒2)𝛼 𝑗 (𝑝)
√︁
𝑝𝑒2

cosh𝜋𝜅 𝑗
ℎ+(𝜅 𝑗 ), (4.19)
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C(𝑐, 𝑝,𝑢) = 1
𝜋

∑︁
𝔠

∫
R

√︁
𝑝𝑒2

cosh𝜋𝑡
𝜑𝔠 (𝑒2, 𝑡)𝜑𝔠 (𝑝, 𝑡)ℎ+(𝑡)𝑑𝑡, (4.20)

H(𝑐, 𝑝,𝑢) = 1
2𝜋

∑︁
ℓ⩾2

1⩽ 𝑗⩽𝜃ℓ (𝑐𝐿1,𝑟𝑑)

(𝑙 − 1)!
√︁
𝑝𝑒2 𝜓 𝑗,ℓ (𝑒2)𝜓 𝑗,ℓ (𝑝)ℎℎ (ℓ), (4.21)

where the precise notations are as in Section 2.4.2.

Proposition 7. With the above notations, we have∑︁
𝑐⩾1

∑︁
𝑝≍𝑃

1
√
𝑝
𝑒

(
𝑣
𝑝

𝑃

)
𝑉

(𝑝
𝑃

)
D(𝑐, 𝑝,𝑢) ≪ 𝑄𝜀 (1 + |𝑢 |)2(1 + |𝑣 |)2

√
𝑃

𝑄
, (4.22)

∑︁
𝑐⩾1

∑︁
𝑝≍𝑃

1
√
𝑝
𝑒

(
𝑣
𝑝

𝑃

)
𝑉

(𝑝
𝑃

)
H(𝑐, 𝑝,𝑢) ≪ 𝑄𝜀 (1 + |𝑢 |)2(1 + |𝑣 |)2

√
𝑃

𝑄
, (4.23)

∑︁
𝑐⩾1

∑︁
𝑝≍𝑃

1
√
𝑝
𝑒

(
𝑣
𝑝

𝑃

)
𝑉

(𝑝
𝑃

)
C(𝑐, 𝑝,𝑢) ≪ 𝑄𝜀 (1 + |𝑢 |)2(1 + |𝑣 |)2

(√
𝑃

𝑄
+ 𝑃1/4+𝜀

)
. (4.24)

We obtain the analogue statement for the product by an immediate induction. The spectral aspect
of the computations are exactly as in [1] where they are extensively treated, and we therefore
afford not to give all the details. The main point to import the computations therein is that the
quantities only differ by logarithmic factors, while the bound ultimately obtained for Σ2 displays
a power savings in𝑄 , see [1, End of Section 6]. Since 𝑃 ≪ 𝑐 (𝑓 ) ⩽ 𝑄 , Proposition 7 indeed implies
Proposition 6.

We explain how to bound the discrete and holomorphic parts first, following [1, Proposition
6.2]. The discrete contribution (the holomorphic one is analogous, and easier since we have the
Deligne bound) displays sums that are∑︁
𝑐⩾1

∑︁
𝑝

1
√
𝑝
𝑒

(
𝑣
𝑝

𝑃

)
D(𝑐, 𝑝,𝑢)𝑉

(𝑝
𝑃

)
=

∑︁
𝑐⩾1

∑︁
𝑗

𝑒𝜌 𝑗 (𝑒2)
cosh𝜋𝜅 𝑗

ℎ+(𝜅 𝑗 )
∑︁
𝑝

√
𝑝𝜌 𝑗 (𝑝)√
𝑝

𝑒

(
𝑣
𝑝

𝑃

)
𝑉

(𝑝
𝑃

)
. (4.25)

We start bounding this innermost 𝑝-sum:

Lemma 9. We have∑︁
𝑝

√
𝑝𝜌 𝑗 (𝑝)√
𝑝

𝑒

(𝑣𝑝
𝑃

)
𝑉

(𝑝
𝑃

)
≪ (|𝜌 𝑗 (1) | + |𝜌 𝑓 (1) |) (𝑐𝐿1𝑟𝑑)𝜀 log(𝑃)𝜀 (1 + |𝑣 |)2, (4.26)

where 𝑓 is a suitable oldform below 𝑓 , see [1].

Proof. By Mellin inversion applied to 𝑒𝑉 , we have∑︁
𝑝

√
𝑝𝜌 𝑗 (𝑝)√
𝑝

𝑒

(𝑣𝑝
𝑃

)
𝑉

(𝑝
𝑃

)
=

1
2𝑖𝜋

∑︁
𝑝

√︁
𝑝𝛼 𝑗 (𝑝)√
𝑝

𝑉0

(𝑝
𝑃

) ∫
(0)
𝑝−𝑠𝑊̃ (𝑠)𝑃𝑠𝑑𝑠 (4.27)
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where𝑊 (𝑥) =𝑊𝑣 (𝑥) = 𝑒 (𝑣𝑥)𝑉 (𝑥). We have that 𝑊̃𝑣 (𝑖𝑡) ≪ ((1 + |𝑣 |)/(1 + |𝑡 |))𝐴 by integrating
by parts. Swapping the summation and integration, we therefore get

1
2𝑖𝜋

∫
(0)
𝑃𝑠𝑊̃ (𝑠)

∑︁
𝑝

𝛼 𝑗 (𝑝)
√
𝑝

𝑝1/2+𝑖𝑡 𝑉0(𝑝/𝑃). (4.28)

By the "trivial bound" on the power one terms from Lemma 4, we have that∑︁
𝑝

𝛼 𝑗 (𝑝)
√
𝑝

𝑝1/2+𝑖𝑡 𝑉0

(𝑝
𝑃

)
≪ |𝜌 𝑗 (1) | log(𝑐𝐿1𝑟𝑑) log(𝑋 )𝜀 + |𝜌 𝑓 (1) | (𝑐𝐿1𝑟𝑑)𝜀 (4.29)

≪ (|𝜌 𝑗 (1) | + |𝜌 𝑓 (1) |) (𝑐𝐿1𝑟𝑑)𝜀 (1 + |𝑡 |)𝜀 log(𝑃)𝜀 . (4.30)

Therefore, applying the decay of 𝑊̃ (𝑠) written above with 𝐴 = 2 to ensure the convergence of
the vertical integral, we get that the whole sum over 𝑝 is indeed

≪ (|𝜌 𝑗 (1) | + |𝜌 𝑓 (1) |) (𝑐𝐿1𝑟𝑑)𝜀 (1 + |𝑣 |)2
∫
(0)

𝑑𝑡

(1 + |𝑡 |)2−𝜀 (4.31)

and the vertical integral converges, giving the claimed result. □

Back to the whole discrete contribution, and inputing the above bound, we get that

D(𝑐, 𝑝,𝑢) =
∑︁
𝑐⩾1

∑︁
𝑗

𝑒𝜌 𝑗 (𝑒2)
cosh𝜋𝜅 𝑗

ℎ+(𝜅 𝑗 )
∑︁
𝑝

√
𝑝𝛼 𝑗 (𝑝)√
𝑝

𝑒

(𝑣𝑝
𝑃

)
𝑉

(𝑝
𝑃

)
(4.32)

≪
∑︁
𝑐⩾1

min(𝑋𝑘−1, 𝑋−1/2) (𝑐𝐿1𝑑𝑟 )𝜀 log(𝑃)𝜀 (1 + |𝑣 |)2𝑒1+𝜀 1 + | log𝑋 |
𝐹 1−𝜀 (4.33)

×
∑︁
𝑗

|𝜌 𝑓 (1) | ( |𝜌 𝑗 (1) | + |𝜌 𝑓 (1) |)
cosh𝜋𝜅 𝑗

(
𝐹

1 + 𝜅 𝑗

)𝐶
(4.34)

where we used the bound on ℎ+ given in [1], with in particular 𝐹 ≍ (1+ |𝑢 |) (1+4𝜋𝐿1𝐿2
√
𝑃𝑒2/𝑐𝑄),

as well as the bound 𝑒𝜌 𝑗 (𝑒2) ≪ 𝑒1+𝜀 |𝜌 𝑓 (1) | on the coefficients. We can now sum the spectral part
depending on the position of the spectral parameter 𝜅 𝑗 with respect to 𝐹 :∑︁
𝑗

|𝜌 𝑓 (1) | ( |𝜌 𝑗 (1) | + |𝜌 𝑓 (1) |)
cosh𝜋𝜅 𝑗

(
𝐹

1 + 𝜅 𝑗

)𝐶
≪

∑︁
|𝜅 𝑗 |<𝐹

|𝜌 𝑗 (1) |2

cosh𝜋𝜅 𝑗
1
𝐹 1−𝜀 +

∑︁
|𝜅 𝑗 |>𝐹

|𝜌 𝑗 (1) |2

cosh𝜋𝜅 𝑗
1
𝐹 1−𝜀

(
𝐹

1 + |𝜅 𝑗 |

)2+𝜀
.

The first sum is bounded by a spectral large sieve. We can then finish the proof as in [1], mutatis
mutandis. It would remain to bound the continuous spectrum, we can do it as in [1] following
exactly the same lines, inputing the induction as in [9], and just changing the "trivial bound"
from [9, Lemma 2.12] to the "trivial bound" from Lemma 4. This ends the proof of Theorem 3. □

4.2. Moment method and distribution. As in [13], this essentially allows to say that the
𝑃 (𝑓 , 𝑥), hence the central values, mimicks the behavior of a normal distribution, in phase with
the Keating-Snaith Conjecture 2. We encapsulate in the following statement the distributional
consequence of this moment method:
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Corollary 2. We have, for all sequence (𝑏 𝑓 )𝑓 ∈𝐻𝑘 (𝑞) ,∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽)

𝑏 𝑓 = (𝑀 (𝛼, 𝛽) + 𝑜 (1))
∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑏 𝑓 , (4.35)

where

𝑀 (𝛼, 𝛽) :=
1

√
2𝜋

∫ 𝛽

𝛼

𝑒−𝑥
2/2𝑑𝑥 . (4.36)

Proof. Asymptotically, Theorem 3 proved that the ℓ-th moment of 𝑃 (𝑓 , 𝑥)/
√︁

log log𝑥 behaves as
the ℓ-th moment of the normal distribution, i.e. when 𝑥 grows to infinity,∑︁

𝑞⩾1
Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)

(
𝑃 (𝑓 , 𝑥)√︁
log log𝑥

) ℓ
𝑏 𝑓 ∼

∫
R
𝑥 ℓ𝑒−𝑥

2/2𝑑𝑥
∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑏 𝑓 (4.37)

so we deduce that, for any polynomial 𝑅 ∈ R[𝑋 ],∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑅

(
𝑃 (𝑓 , 𝑥)√︁

log2 𝑥

)
𝑏 𝑓 ∼

∫
R
𝑅(𝑥)𝑒−𝑥2/2𝑑𝑥

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑏 𝑓 (4.38)

and, by approximating the characteristic function 1(𝛼,𝛽) in 𝐿1-norm by a polynomial 𝑅, we deduce
that (inputting the smooth sum over levels and the weighted sum of 𝑓 ∈ 𝐻𝑘 (𝑞) in the summation
over F𝑄 ) ∑︁

𝑓 ∈F𝑄
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽)

𝑏 𝑓 =
∑︁
𝑓 ∈F𝑄

1(𝛼,𝛽)

(
𝑃 (𝑓 , 𝑥)√︁

log2 𝑥

)
𝑏 𝑓 (4.39)

∼
∫
R
1(𝛼,𝛽) (𝑥)𝑒−𝑥

2/2𝑑𝑥
∑︁
𝑓 ∈F𝑄

𝑏 𝑓 = 𝑀 (𝛼, 𝛽)
∑︁
𝑓 ∈F𝑄

𝑏 𝑓 (4.40)

as claimed. □

This result, along with the above treatment of the other powers 𝛼 , finish the proof of Theorem 3.

4.3. Uncorrelation lemma. A similar result has to be available when weighted by one-level
densities, analogously to the central result [13, Proposition 3, second part]:

Corollary 3 (Weighted moments property). Assume the generalized Riemann hypothesis for the
symmatric squares L-functions 𝐿(, sym2𝑓 ). We have, for all smooth function ℎ with compactly sup-
ported Fourier transform, and all ℓ ⩾ 1,

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)ℓ𝐷 (𝑓 , ℎ) = (𝑀ℓ + 𝑜 (1)) (log log(𝑥))ℓ/2

∫
R
𝑊Oℎ. (4.41)

This proposition means that we can decouple the one-level density statement and the moment
property, both exploiting trace formulas. In other words, one-level densities and sums over coef-
ficients are uncorrelated.
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Proof. We have to deal with the sum

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)ℓ𝐷 (𝑓 , ℎ) (4.42)

The innermost one-level density is understood by Proposition 1 and can be written as

𝐷 (𝑓 , ℎ) = ℎ̂(0) + 1
2ℎ(0) + 𝑃

(1) (𝑓 , ℎ) +𝑂
(
log log𝑞

log𝑞

)
(4.43)

as proven for instance in [6, (4.25)], consequence of the generalized Riemann Hypothesis for
𝐿(𝑠, sym2𝑓 ), and where the implied constant only depends upon the test-function ℎ. Note that we
have ℎ̂(0)+ 1

2ℎ(0) =
∫
ℎ𝑊O, the limiting one-level density. The constant part in this expression can

therefore be pulled out of the sum, since independent of 𝑓 and 𝑞, and the Theorem 3 is therefore
applicable as it stands, giving a contribution of

(𝑀ℓ + 𝑜 (1)) (log log𝑥)ℓ/2
∫
R
𝑊Oℎ. (4.44)

The error term contributes negligibly to the whole sum over the family. The remaining contri-
bution is of the form

1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)ℓ𝑃 (1) (𝑓 , ℎ) (4.45)

which, by applying the Cauchy-Schwarz inequality, is bounded by

©­« 1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 , 𝑥)2ℓª®¬

1/2 ©­« 1
𝑁 (𝑄)

∑︁
𝑞⩾1

Ψ

(
𝑞

𝑄

) ∑︁ℎ

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (1) (𝑓 , ℎ)2ª®¬

1/2

. (4.46)

By Theorem 3, the first parenthesis is bounded by (log log(𝑥))ℓ , so that its square root has similar
size as the expected main term. The statement [9, Proposition 4.1] bounds the second parenthesis
by 𝑂 (1/log𝑄) = 𝑜 (1), proving that the whole contribution coming from 𝑃 (1) (𝑓 , ℎ) is negligible,
as claimed. □

5. Proof of Theorem 2

The above tools being now at hand, we follow the strategy presented in [13] in the case of qua-
dratic twists of an elliptic curve. We show that there are not many small zeros by an amplifi-
cation process, which will be used to prove that the sum over zeros in the explicit formula (2.9)
contributes as an error term. The moment method will then allow to select the values for which
we are in the desired range, giving the result.

5.1. Amplification of small zeros. The following result, analogue of [13, Lemma 1], uses The-
orem 3 to quantify the proportion of 𝑓 ∈ 𝐻𝑘 (𝑞) such that 𝑃 (𝑓 , 𝑥) falls into a specific range; and
Corollary 3 to jointly quantify the proportion of 𝑓 ∈ 𝐻𝑘 (𝑞) having not too many small zeros.
Introduce the notation 𝑥 = 𝑋 1/log log log𝑋 for this section.
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Proposition 8. The smooth averaged number of 𝑓 ∈ 𝐻𝑘 (𝑞) such that 𝑃 (𝑓 , 𝑥)/
√︁

log log𝑥 ∈ (𝛼, 𝛽)
and such that there are no zeros with |𝛾 𝑓 | ⩽ (log𝑋 log log𝑋 )−1 is at least

5
8
𝑀 (𝛼, 𝛽)𝑁 (𝑄), (5.1)

where𝑀 (𝛼, 𝛽) is the normal distribution, as defined in (4.36).

Proof. Choose for ℎ the explicit Féjer kernel up to the maximal Fourier support 𝐿 = 4 allowed by
the low-lying zero result given in Theorem 1.6, i.e.

ℎ0(𝑥) :=
(
sin𝜋𝑥
𝜋𝑥

)2
ℎ̂0(𝑦) = max(1 − |𝑦 |, 0), (5.2)

which has Fourier transform supported in (−1, 1), and ℎ(𝑥) = ℎ0(4𝑥) so that ℎ̂(𝑦) = 1
4ℎ̂0(𝑥/4) is

compactly supported in (−4, 4). Let 𝐻 = 𝐷 (𝑓 , ℎ) to lighten notation for the duration of the proof.
We get from Corollary 2: ∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽)

𝐻Ψ

(
𝑞

𝑄

)
∼ 𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝐻Ψ

(
𝑞

𝑄

)
, (5.3)

and, by Corollary 3, we get∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝐻Ψ

(
𝑞

𝑄

)
∼

∫
R
𝑊Oℎ

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Ψ

(
𝑞

𝑄

)
=

3
4

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Ψ

(
𝑞

𝑄

)
, (5.4)

because ∫
𝑊O(𝑦)ℎ(𝑦)𝑑𝑦 =

3
4

(5.5)

by the explicit choice of ℎ, which is allowed to have Fourier support in (−4, 4). See [6] for the
proof of the optimality of this function in such a setting.

We use the similar amplification argument as in [13] approach. Rewrite the above sum as∑︁
(𝛼,𝛽)

𝐻Ψ =
∑︁
(𝛼,𝛽)
∃

𝐻Ψ +
∑︁
(𝛼,𝛽)
�

𝐻Ψ (5.6)

using ℓ = (log𝑋 log log𝑋 )−1 and the following notation:∑︁
(𝛼,𝛽)

𝐻Ψ =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
𝐻Ψ

(
𝑞

𝑄

)
1
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽), (5.7)

∑︁
(𝛼,𝛽)
∃

𝐻Ψ =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
∃ |𝛾𝑓 |⩽ℓ

𝐻Ψ

(
𝑞

𝑄

)
1
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽), (5.8)

∑︁
(𝛼,𝛽)
�

𝐻Ψ =
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
� |𝛾𝑓 |⩽ℓ

𝐻Ψ

(
𝑞

𝑄

)
1
𝑃 (𝑓 ,𝑥)/

√
log log𝑥∈(𝛼,𝛽) . (5.9)
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The weights ℎ(𝛾 𝑓 ) are non-negative, since the function ℎ we chose is non-negative. If 𝐿(𝑠, 𝑓 )
has a zero 𝛾 𝑓 of size at most ℓ , then 𝛾 𝑓 is at most log log(𝑋 )−1, and its conjugate is also a zero of
the same size. Choosing a continuous function ℎ such that ℎ(0) = 1, when 𝑥 grows to infinity,
both ℎ(𝛾 𝑓 ) and ℎ(𝛾̃ 𝑓 ) are at least 1 − 𝜀, for any given 𝜀 > 0. In particular 𝐻 = 𝐷 (𝑓 , ℎ) ⩾ 2 − 𝜀 and
we can therefore write∑︁
(𝛼,𝛽)

𝐻Ψ =
∑︁
(𝛼,𝛽)
∃

𝐻Ψ+
∑︁
(𝛼,𝛽)
�

𝐻Ψ ⩾ (2−𝜀)
∑︁
(𝛼,𝛽)
∃

Ψ+
∑︁
(𝛼,𝛽)
�

𝐻Ψ = (2−𝜀)
∑︁
(𝛼,𝛽)

Ψ+
∑︁
(𝛼,𝛽)
�

(𝐻 −2+𝜀)Ψ, (5.10)

so that we get ∑︁
(𝛼,𝛽)

𝐻Ψ −
∑︁
(𝛼,𝛽)
�

(𝐻 − 2 + 𝜀)Ψ ⩾ (2 − 𝜀)
∑︁
(𝛼,𝛽)

Ψ. (5.11)

On the other hand, the above consequences of the moment method and of the limiting one-
level density results allow to estimate the sums over all forms with restrictions on 𝑃 (𝑓 , 𝑥). More
precisely, Corollary 2 implies ∑︁

(𝛼,𝛽)
Ψ ∼ 𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Ψ (5.12)

and Corollary 3 states that ∑︁
(𝛼,𝛽)

𝐻Ψ ∼ 3
4
𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Ψ. (5.13)

We thus derive from (5.11) that
3
4
𝑀 (𝛼, 𝛽)

∑︁
𝑓 ∈𝐻𝑘 (𝑞)

Ψ −
∑︁
(𝛼,𝛽)
�

(𝐻 − 2 + 𝜀)Ψ ⩾ (2 − 𝜀)𝑀 (𝛼, 𝛽)
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
Ψ + 𝑜 (1). (5.14)

Since 0 ⩽ ℎ ⩽ 1, we get

(2 − 𝜀)
∑︁
(𝛼,𝛽)
�

Ψ ⩾
∑︁
(𝛼,𝛽)
�

(2 − 𝐻 − 𝜀)Ψ ⩾
5
4
𝑀 (𝛼, 𝛽) + 𝑜 (1), (5.15)

from where we obtain a lower bound for the smoothed quantity of 𝑓 ∈ 𝐻𝑘 (𝑞) having zeros of
size at most ℓ , viz. ∑︁

(𝛼,𝛽)
�

Ψ

(
𝑞

𝑄

)
⩾ ( 5

8 − 𝜀)𝑀 (𝛼, 𝛽)
∑︁

𝑓 ∈𝐻𝑘 (𝑞)
Ψ

(
𝑞

𝑄

)
, (5.16)

for all 𝜀 > 0, as wanted. □

Remark 8. The constant 5/8 is exactly the one appearing in Theorem 2, and this is where we see
that the quality of the results towards the density conjecture, i.e. the width of the allowed Fourier
support, conditions the quality of this lower bound. Note that this gives the same value as the
method in [6] to obtain lower bounds for nonvanishing, as anticipated by [13].
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5.2. Few zeros contributing a lot. The following result quantifies how rare are the 𝑓 ∈ 𝐻𝑘 (𝑞)
such that the contribution from the sum over zeros in the explicit formula (2.9) is large.

Proposition 9. The number of 𝑓 ∈ 𝐻𝑘 (𝑞) such that∑︁
|𝛾𝑓 |⩾(log𝑋 log log𝑋 )−1

log(1 + (𝛾 𝑓 log𝑥)−2) ⩾ (log log log(𝑋 ))3 (5.17)

is asymptotically dominated by 𝑋/log log log𝑋 .

Proof. The same proof as in [13, Lemma 2] holds mutatis mutandis. □

5.3. Conclusion. This closely follows the argument of [13], now that all the corresponding es-
timates have been established. We write it here for the sake of completeness. Recall from Propo-
sition 2, with 𝑥 = 𝑐 (𝑓 ), that

log𝐿( 1
2 , 𝑓 ) = 𝑃 (𝑓 , 𝑥) −

1
2 log log(𝑥) +𝑂 ©­«

∑︁
𝛾𝑓

log(1 + (𝛾 𝑓 log𝑥)−2)ª®¬ . (5.18)

By Proposition 8, we may select 𝑓 ’s such that 𝑃 (𝑓 , 𝑥)/
√︁

log log𝑋 ∈ (𝛼, 𝛽) and that there are no
small zeros, without loosing at most a proposition of 3

8 of the whole family, i.e.∑︁
𝑓 ∈𝐻𝑘 (𝑞)

𝑃 (𝑓 ,𝑥)/
√

log log𝑥∈(𝛼,𝛽)
�|𝛾𝑓 |⩽(log𝑋 log log𝑋 )−1

1 ⩾ 5
8𝑀 (𝛼, 𝛽)𝑁 (𝑄). (5.19)

By Proposition 9, we may remove 𝑓 ’s such that the sum over zeros larger than (log𝑋 log log𝑋 )−1

contributes more than log log log(𝑋 )3, since they are asymptotically a negligible cardinality, and
the other ones do not contribute that much.

The proportion of 𝑓 such that 𝑃 (𝑐 (𝑓 ), 𝑓 )/
√︁

log log 𝑐 (𝑓 ) falls into (𝛼, 𝛽) is therefore asymptotically
larger than 5

8𝑀 (𝛼, 𝛽) as claimed in the theorem, henceforth ending the proof of Theorem 2.
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