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LOW-LYING ZEROS OF L-FUNCTIONS FOR
QUATERNION ALGEBRAS

by Didier LESESVRE (*)

Abstract. The density conjecture of Katz and Sarnak predicts that,
for natural families of L-functions, the distribution of zeros lying
near the real axis is governed by a group of symmetry. In the case
of the universal family of automorphic forms on a totally definite
quaternion algebra, we determine the associated distribution for a
restricted class of test functions in the analytic conductor aspect. In
particular it leads to non-trivial results on densities of non-vanishing
at the central point.

Petits zéros de fonctions L pour les algèbres de quaternions

Résumé. Pour des familles naturelles de fonctions L, La conjecture
de densité de Katz et Sarnak prédit que la distribution des zéros
proches de l’axe réel est régie par un groupe de symétrie. Dans le
cas de la famille universelle des algèbres de quaternions totalement
définies, nous déterminons la distribution associée pour une classe
explicite de fonctions test, uniformément lorsque le conducteur ana-
lytique croît. En particulier, cela mène à des résultats non-triviaux
sur les densités de non-annulation aux valeurs centrales.
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1. Introduction

1.1. Statement of results

Let F be a number field of degree d over Q and A the ring of adeles
of F . We consider a division quaternion algebra B over F , and write R
for the places of F where B is not split. We introduce the group of pro-
jective units G = Z\B×, where Z denotes the center of B×. Let A(G)
denote the universal family of G, that is the set of all infinite dimensional
irreducible automorphic representations of the group G(A). It embeds, via
the Jacquet-Langlands correspondence, into the universal family of PGL(2)
made of all its cuspidal automorphic representations. Following Sarnak [29],
a deep understanding of A(G) is of fundamental importance in the theory
of automorphic forms.

In order to make sense of problems on average for A(G), it is necessary
to truncate the universal family to a finite set. We do so by bounding the
analytic conductor c(π) of Iwaniec and Sarnak [14]. The truncated universal
family may then be introduced as

(1.1) A(Q) = {π ∈ A(G) : c(π) 6 Q}, Q > 1.

In a previous work [19], we have shown that A(Q) is a finite set and
determined arithmetic statistics on this universal family when Q grows to
infinity. Namely, an asymptotic expansion for its cardinality was given, as
well as global and local equidistribution results.

Theorem 1.1 (Counting law for quaternion algebras). — Introduce
δF = 2(1 + [F : Q])−1. There exists C > 0 such that, for any Q > 1,

|A(Q)| = CQ2+


O
(
Q1+ε) if F = Q and B totally definite, for all ε > 0;

O
(
Q2−δF

)
if F 6= Q and B totally definite;

O
(

Q2

logQ

)
if B is not totally definite.

The exact form of the constant C is given in [19, Eq. (8)] in a geometric
meaningful form. The knowledge of this cardinality opens the path to other
statistical results. By refining the methods leading to the above theorem,
mainly based on the construction of a suitable test function for the Arthur-
Selberg trace formula, we address here the question of the distribution of
the low-lying zeros of the associated L-functions. We briefly state the two
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main results of this paper before presenting the more detailed setup in the
next sections.

Let π ∈ A(G). Let φ be an even Schwartz function on R with compactly
supported Fourier transform. In particular it admits analytic continuation
to the whole the complex plane. The one-level density attached to π is
defined by the distribution

(1.2) D(π, φ) =
∑
γπ

φ (γ̃π) ,

where the sum runs over nontrivial zeros of the L-function L(s, π), normal-
ized as in Section 1.2.2.

Theorem 1.2. — Let B a totally definite quaternion algebra. For every
even and Schwartz class function φ on R with Fourier transform compactly
supported in (−2/3, 2/3), we have

(1.3) 1
|A(Q)|

∑
π∈A(Q)

D(π, φ) −−−−→
Q→∞

∫
R
φ(x)WO(x)dx = φ̂(0) + 1

2φ(0).

The distribution density is therefore given by the function WO = 1 + 1
2δ0.

In particular, the type of symmetry of the inner forms of PGL(2) is the
one of the orthogonal group.

Statistics on the distribution of low-lying zeros of L-functions are known
to lead to results concerning vanishing at the central point, following the
ideas of Iwaniec, Luo and Sarnak [13]. Introduce the proportion of auto-
morphic representations with vanishing at the central point of order m,
that is to say

(1.4) pm(Q) = 1
|A(Q)|#

{
π ∈ A(Q) : ord

s=1/2
L(s, π) = m

}
, m ∈ N.

Corollary 1.3. — Let B a totally definite quaternion algebra and
assume the generalized Riemann hypothesis. We have

(1.5) lim inf
Q→∞

∑
m>1

mpm(Q) 6 2.

1.2. One-level densities

There is a long-lasting history about zeros of L-functions, that remain
even today a challenging field of investigation. The lack of tools to grasp
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such zeros pointwise leads to search for results on average. The theory of
random matrices [25] is a glass through which understand the field of sta-
tistics on zeros of L-functions. Indeed, the zeros of families of L-functions
behave strikingly like the eigenangles of classical groups of random matri-
ces, and this heuristics serves as a guide for the L-function world. For a wide
insight, we refer to the general survey of Sarnak, Shin and Templier[30].

Rudnick and Sarnak [28] showed that the pair correlation of spacings
between zeros of automorphic L-functions matches the pair correlation of
spacings between eigenvalues of classical groups of random matrices. The
universality of the pair correlations is surprising for it is blind to the differ-
ences between the classical groups. A further disappointment with correla-
tions is that they are unsensitive to finitely many modifications of the zeros,
and in particular do not give any importance to zeros usually of arithmetic
significance, typically the central point. Altogether, it can be expected that
other statistics are able to distinguish between them.

1.2.1. One-level density for matrices

The correlation statistics take into account all the eigenangles, since
they consider only the distribution of spacings between them. Katz and
Sarnak [15] broke this universality, turning their interest towards statistics
concentrated on small eingenangles. They proved that the average density
of these small eigenangles over a family differs depending on the group.
Let φ be an even Schwartz function on R and and A be a diagonalizable
unitary matrix of one of the classical groups G(N). The one-level density
attached to A ∈ G(N), where G(N) is among U(N),Sp(N),O(N),SO(2N)
or SO(2N + 1), is

(1.6) D(A, φ) =
∑
θA

φ
(
θ̃A
)
,

where the sum runs over the eigenangles θA of A, and θ̃A = N
2π θA.

Theorem 1.4 (Katz-Sarnak). — For the classical groups G(N), for ev-
ery even Shcwartz function φ on R whose Fourier transform is compactly
supported, we have

(1.7)
∫
G(N)

D(A, φ)dA −−−−→
N→∞

∫
R
WG(x)φ(x)dx,
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where dA is a normalized Haar measure on G(N), and the densities func-
tions WG on R are defined by

WU(x) = 1

WSp(x) = 1− sin 2πx
2πx

WSO(even)(x) = 1 + sin 2πx
2πx

WSO(odd)(x) = 1− sin 2πx
2πx + δ0(x)

WO(x) = 1
2
(
WSO(even)(x) +WSO(odd)(x)

)
= 1 + 1

2δ0(x).

The fact that the limit is no more universal but does depend on the
group gives rise to the notion of type of symmetry of a family of random
matrices.

1.2.2. One-level density for L-functions

Following the enlightening analogy with random matrices, it can be ex-
pected that the one-level density of the zeros attached to every reasonable
family of L-functions behaves as the one-level density of the eigenangles of
the classical groups of random matrices, in other words that the behavior
of low-lying zeros of L-functions is modeled by the classical groups.

Let π be an automorphic representation with an associated notion of
L-function L(s, π). Consider its nontrivial zeros written in the form

(1.8) ρπ = 1
2 + iγπ.

Here the γπ are a priori complex numbers without assuming the Riemann
hypothesis. Renormalize the mean spacing (in the case where the γπ are
real) of the low-lying zeros to 1 by setting

(1.9) γ̃π = log c(π)
2π γπ.

Let φ be an even Schwartz function on R whose Fourier transform is
compactly supported, in particular it admits an analytic continuation to all
C. Let π be an automorphic representation. The one-level density attached
to π is defined by

(1.10) D(π, φ) =
∑
γπ

φ (γ̃π) .
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The first result estimating the one-level density is given by Özlük and
Snyder [32] in 1993 for L-functions attached to Dirichlet characters. Since
then, a wide literature has been published concerning the statistical behav-
ior of low-lying zeros of families of L-functions [9, 11, 13, 20, 27]. This led
Katz and Sarnak [16] to formulate the so-called density conjecture, claiming
the same universality for the types of symmetry of families of L-functions
than those arising for classical groups of random matrices.

Conjecture 1.5 (Density conjecture). — Let F be a family of auto-
morphic representations in the sense of Sarnak and FQ a finite truncation
increasing to F when Q grows. Then for all even Schwartz function on R
with compactly supported Fourier transform, there is one classical group
G among U, SO(even), SO(odd), O or Sp such that

(1.11) 1
|FQ|

−−−−→
Q→∞

∫
R
φ(x)WG(x)dx.

The family F is then said to have the type of symmetry of G.

Remark. For families of L-functions associated to algebraic varieties over
function fields, the type of symmetry is determined by the monodromy of
the family [15], shedding light on the reason why zeros of L-functions are
governed by groups of random matrices. No such analogue is known for
number fields.

1.3. Type of symmetry of quaternion algebras

Considering the statistics on low-lying zeros of L-functions attached to
the universal family of quaternion algebras, the problem is to determine
whether or not the averaged one-level density on A(Q) admits a limit and
unveils a type of symmetry according to the density conjecture. The follow-
ing statement answers positively to this question and partially determines
the type of symmetry of quaternion algebras.

Theorem 1.6. — Let B a totally definite quaternion algebra. For every
even and Schwartz class function φ on R with Fourier transform compactly
supported in (−2/3, 2/3), we have

(1.3) 1
|A(Q)|

∑
π∈A(Q)

D(π, φ) −−−−→
Q→∞

∫
R
φ(x)WO(x)dx = φ̂(0) + 1

2φ(0).
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The distribution density is therefore given by the function WO = 1 + 1
2δ0.

In particular, the type of symmetry of the inner forms of PGL(2) is the
one of the orthogonal group.

Remark. It is natural to relate the above result to the two important pa-
pers [13] and [31].

(i) The landmark work in the Katz-Sarnak philosophy is the one of
Iwaniec, Luo and Sarnak [13] in the case of classical automor-
phic forms. By the Jacquet-Langlands correspondence, the universal
family we consider, A(G), can be embedded in the universal fam-
ily made of all the cuspidal automorphic representations of GL(2).
When B is the quaternion algebra over Q ramified at the prime
place q and at the archimedean place, the automorphic represen-
tations we consider are in one-to-one correspondence with classical
holomorphic cusp forms of level q, so that the result of Iwaniec, Luo
and Sarnak provides and instance of Theorem 1.2. Their result dis-
plays a better bound for the support allowed for the Fourier trans-
form (viz. 2 instead of 2/3). This feature comes from the fact that
their setting is restricted to the special case of holomorphic cusp
forms, allowing to use the Petersson formula and specific bounds
on Kloosterman sums. Theorem 1.2 is much more general and not
only encapsulates Hilbert modular forms on general number fields,
but also Maass forms.

(ii) Despite the wide generality of [31], Shin and Templier are not able to
display a quantitatively explicit bound for the limiting Fourier sup-
port and do require automorphic representations to have prescribed
ramification. Theorem 1.2 allows automorphic representations to be
ramified at an arbitrarily large and not uniformly bounded number
of places.

An important caveat ought to be mentioned concerning the orthogonal
types of symmetry. The density conjecture postulates results for Schwartz
functions with arbitrary compactly supported Fourier transform. Assuming
this conjecture, proving the convergence for a narrower class of allowed
Fourier supports may determine uniquely the conjectural type of symmetry.
However this is not the case for all the supports, and an uncertainty remains
in the case or supports smaller than (−1, 1). Indeed, the Plancherel formula
yields

(1.12)
∫

R
φ(x)W (x)dx =

∫
R
φ̂(x)Ŵ (x)dx.
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Looking at the Fourier transforms of the densities, introducing η the char-
acteristic function of [−1, 1], direct computations leads to

ŴU(x) = δ0(x)

ŴSp(x) = δ0(x)− 1
2η(x)

ŴSO(even)(x) = δ0(x) + 1
2η(x)

ŴSO(odd)(x) = δ0(x)− 1
2η(x) + 1

ŴO(x) = δ0(x) + 1
2 .

Unfortunately, we notice that the three orthogonal types of symmetry, viz.
ŴO, ŴSO(even) and ŴSO(odd), are indistinguishable in (−1, 1). Therefore,
Theorem 1.2 only partially determines the type of symmetry of the univer-
sal family of quaternion algebras. However, following Miller [26], determin-
ing the two-level density of the low-lying zeros of A(G) is enough to deter-
mine the type of symmetry for an arbitrarily small support of the Fourier
transform of the test function. This computation of the limiting two-level
density can be handled explicitly, and essentially amounts to squaring the
expression (2.25) and to carry on the strategy of the present paper. The
formal computation following from there is carried out mutatis mutandis in
[26, Section 4.3]. It can be observed that the determination of the precise
type of symmetry, among the three orthogonal ones, depends on the pro-
portion of automorphic forms having sign −1 in the functional equation.
Such information is not available in the level of generality of this paper;
however, with mild assumption on the conductor, Martin [21] shows (de-
spite an interesting bias) that the limiting proportion is 1/2, pleading for
an orthogonal type of symmetry for A(G). The family restricted to positive
(resp. negative) signs in the functional equation has an even (resp. odd)
orthogonal type of symmetry, see [26, Theorem 3.2]. This formal argument
provides evidence for the conjectural type of symmetry; however a careful
study of the spectral terms involved in the trace formula is needed to ensure
actual convergence for non-trivial supports of the Fourier transform.

Remarks. There are some directions in which this result generalizes.

(i) The centerless assumption has been made for convenience and the
same proof carries on to the general central character with minor
modifications in Section 5.3.2. In this case, the type of symmetry is
expected to be unitary.
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(ii) The totally definite assumption is more significant, but the result
is still expected to hold in the case of any quaternion algebra. Let
us mention some of the extra difficulties that should arise. For a
non totally definite division quaternion algebra, the archimedean
spectrum is no more discrete and the selecting function has to be
approximated by a smoothing procedure. This can be done only
on the tempered part of the spectrum, by Paley-Wiener type theo-
rems, so that the contribution of the archimedean complementary
spectrum has to be shown to contribute as an error term. This has
already been done by the author for counting and equidistribution
results [19] and the same method should be adaptable to extend
Theorem 1.2 to this setting, see the author’s thesis [18] for the de-
tails.

(iii) For the case of GL(2), the automorphic spectrum admits a contin-
uous part that should also be carefully taken care of. The methods
Brumley and Milićević [4] developped to prove the counting law for
the universal family of GL(2) provides the necessary tools. However,
these adaptations are far from trivial and require highly technical
analysis of these extra spectral terms.

(iv) The result on the density of vanishing at the central point, in ad-
dition of verifying the whole density conjecture, are strong moti-
vations to strengthen the bounds on the support of the Fourier
transform in Theorem 1.2, that would yield better results. How-
ever, this would require stronger estimates on orbital integrals that
are not available in the current literature.

1.4. Organization of this article

In Section 2 we recall the basic properties of the automorphic L-functions
and we reformulate the one-level density in terms of distributions of prime
numbers, via an explicit formula. The notations and measures are intro-
duced and the analytic conductor is precisely defined there. The universal
family can be decomposed into harmonic subfamilies by fixing spectral
data, easier to understand, as explained in Section 3. The high orders con-
tributions in the explicit formula are shown to be negligible in Section 4.
The remaining terms are related to the Hecke eigenvalues in Section 5,
leading to a reformulation of the low orders terms as a spectral side of the
Selberg trace formula for a suitable test function, constructed in Section
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6. A precise analysis of the geometric side leads to unveiling the nontrivial
contribution of the low orders terms to the type of symmetry in Section
7, achieving the proof of Theorem 1.2. Finally, the result on the density of
non-vanishing at the central point is derived from the type of symmetry in
Section 8.

2. Groundwork

We denote by v the places of F , p the non-archimedian ones, and Op the
ring of integers of Fp for a finite place p. The finite set R of ramification
places of B determines it up to isomorphism, and is assumed to contain
all the archimedean places. From now on, Latin letters q, d,m, etc. will
denote rational integers, while Gothic letters q, d,m, etc. will denote ideals
of integer rings.

2.1. Analytic conductor

In order to make sense of the problem, we need to define precisely the no-
tion of size we choose for representations. It is the analytic conductor, which
we introduce in this section. We will work with B× more than with G, for it
lightens notations. This local convention makes no harm, for we view a rep-
resentation π of G(A) = PB×(A) as a representation of B×(A) with trivial
central character. By Flath’s theorem, an irreducible admissible represen-
tation of B×(A) decomposes in a unique way as a restricted tensor product
π = ⊗vπv of irreducible smooth representations where almost every com-
ponent πv is unramified. We therefore want first to define the conductor
for the local components πv.

The Jacquet-Langlands correspondence allows to reduce to the GL(2)
case, and in this one only infinite-dimensional representation arise. Indeed,
since the universal family excludes global characters, a representation π in
it is generic. The Jacquet-Langlands correspondence preserves genericity
hence, as shown on the diagram below, associates to π a generic represen-
tation JL(π) of GL(2), thus also its local components JL(π)v. These local
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components are also the images by the local Jacquet-Langlands correspon-
dence JLv(πv) of the local components of π.

π∈A(B×)
JL //

v

��

JL(π)∈A(GL(2))
generic

v

��

πv
JLv

id if v/∈R
// JL(π)v

generic

At split places, the local Jacquet-Langlands correspondence is the iden-
tity, for then B×p ' GL(2, Fp). The correspondence is unique, thus the
local components at split places πv are generic hence infinite-dimensional,
proving the claim.

2.1.1. Non-archimedian case

For finite split places p, by definition Bp ' M (2, Fp) so that B×p is iso-
morphic to GL(2, Fp). The notion of local conductor for irreducible smooth
infinite-dimensional representations of GL(2) has been introduced by Cas-
selman [6]. Consider the sequence of compact open congruence subgroups,
for r > 0,

(2.1) K0,p (pr) =
{
g ∈ GL (2,Op) : g ≡

(
? ?

0 ?

)
mod pr

}
⊆ B×p .

The multiplicative and analytic conductors of an irreducible admissible
infinite-dimensional representation πp of B×p with trivial central character
are then respectively defined by

(2.2) c(πp) = pf(πp) and c(πp) = Nc(πp),

where

(2.3) f(πp) = min
{
r ∈ N : πK0,p(pr)

p 6= 0
}
.

The existence of the conductor is guaranteed by the work of Casselman [6],
who also states that the growth of the dimensions of the fixed vector spaces
are given by

(2.4) dim π
K0,p(pf(πp)+i)
p = i+ 1, i > 0.



12 DIDIER LESESVRE

2.1.2. Archimedian case

The archimedian part of the conductor is introduced by Iwaniec and Sar-
nak [14]. It is built on the archimedean factors completing the L-functions
associated to automorphic representations. The archimedean L-factors are
of the form

(2.5) L(s, πv) =
2∏
j=1

Γv(s− µj,π(v)),

where Γv(s) = π−s/2Γ(s/2) and the µj,π(v) are complex numbers. The
local analytic conductor is then locally defined to be, for v | ∞,

(2.6) cv(π) =
2∏
j=1

(1 + |µj,π(v)|) .

2.1.3. Non-split case

Via the Jacquet-Langlands correspondence, the non-split case is reduced
to the already treated split one. The conductor of an irreducible admis-
sible representation πv of B×v is defined as the conductor of its Jacquet-
Langlands transfer

(2.7) c (πv) = c (JL (πv)) .

2.1.4. Characters

For now conductors have been defined only for generic representations.
However, characters can arise as local components at ramified places as
discussed above. Every character of B×p is a composition

(2.8) B×p −→ F×p −→ C,

where the first application is the reduced norm, and the second one a
character of F×p . In other words, every character of B×p is of the form χ0◦N
where χ0 is a character of F×p and N the reduced norm on B×p . In order to
stay consistent, define the conductor of a local character at a ramified place
as the conductor of its Jacquet-Langlands embedding in GL(2). Since the
character χ0 ◦N is sent to the twisted Steinberg representation St⊗ χ0, it
follows explicitly

(2.9) c(χ0 ◦N) =
{

p if χ0 unramified;
c(χ0)2 if χ0 ramified.

ANNALES DE L’INSTITUT FOURIER
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2.1.5. Global analytic conductor

For an irreducible admissible representation of B×(A) decomposed into
π = ⊗vπv, introduce its global analytic conductor

(2.10) c (π) =
∏
v

c (πv) .

This gives a well-defined notion, for the πv are almost everywhere unrami-
fied, thus of conductor one. It extends to a definition for representations of
G(A), viewed as automorphic representations of B×(A) with trivial central
characters.

2.2. Normalization of measures

At the non-archimedean places, the measure taken on Gp is the Haar
measure µp normalized so that Kp = PGL(2,Op), in the split case, or
Kp = o×p the units of a maximal order of Bp, in the non-split case, gets
measure one. This normalization is independent [12] of the chosen maximal
order. For the archimedean places, we choose the Haar measure normalized
so that the maximal compact subgroup gets measure one.

We now turn to the associated local dual groups. Denote H(Gv) the
Hecke algebra of Gv, that is the algebra consisting of compactly supported
complex-valued functions on Gv, locally constant at finite places, smooth
at archimedian ones. Let H(G(A)) be the Hecke algebra of G(A). It is
the algebra generated by the restricted products φ =

∏
v φv, where φv is a

function of H(Gv) and almost every local component φp is equal to 1Kp
.

For such a function φ ∈ H(G(A)), we extend the action of π to H(G(A)),
letting π(φ) act by the mean action of π weighted by φ, that is to say

(2.11) π(φ) =
∫
G(A)

φ(g)π(g)dg.

This defines a Hilbert-Schmidt integral operator of trace class, thus we can
define its Fourier transform by

(2.12) φ̂(π) = tr π(φ) = tr
(
v 7→

∫
G

φ(g)π(g)vdg
)
.

The unitary dual group Ĝv is endowed with its usual Fell topology and
Plancherel measure associated with the measure chosen on Gv: it is the
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unique positive Radon measure µPl
v on Ĝv such that the Plancherel inver-

sion formula of Harish-Chandra holds, i.e. for functions φv in the Hecke
algebra H(Gv), we have

(2.13)
∫
Ĝv

φ̂v(πv)dµPl
v (πv) = φv(1).

From now on, integrals on Ĝv will be written with the convention that
dπv = dµPl

v (πv), leading to no ambiguity. On Π̂ =
∏
v Ĝv we consider the

product topology and the Plancherel measure, denoted by µPl and given
by the product of the local ones.

2.3. L-functions of automorphic representations

The L-function associated to π = ⊗vπv ∈ A(G) is of the form

(2.14) L(s, π) =
∏
p

L(s, πp) =
∑
Nq>1

aπ(q)
Nqs

,

for s of sufficiently large real part, where aπ(q) are complex numbers, the
sum runs over nonzero integer ideals q of O and Nq denotes the norm of q.
Here, the L(s, πp) are the local factors associated to the components πp at
finite places p, and can be written as

(2.15) L(s, πp) =
(
1− απ(p)Np−s

)−1 (1− βπ(p)Np−s
)−1

,

where απ(p) and βπ(p) are complex numbers, called spectral parameters
of π and generalizing the usual Satake parameters for unramified repre-
sentations. For archimedean places, there are also complex numbers still
denoted απ(v) and βπ(v) such that the associated local factors take the
form

L(s, πv) = Γv(s− απ(v))Γv(s− βπ(v)),

where Γv(s) is defined by ΓR(s) = π−s/2Γ(s/2) when v is a real place, and
by ΓC(s) = ΓR(s)ΓR(s+1) when v is a complex place. The product of these
archimedean L-factors is denoted L(s, π∞) and called the archimedean part
of the L-function. Introduce c(πf ) the arithmetic conductor of π ∈ A(G)
and define the completed L-function as

Λ(s, π) = c(πf )s/2L(s, π∞)L(s, π).

ANNALES DE L’INSTITUT FOURIER
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It satisfies the functional equation

Λ(s, π) = επΛ(1− s, π),

where επ is the root number of π and is among 1 and −1 since π is self-dual.

2.4. Zeros and spectral parameters

Explicit formulas relate zeros of an L-function and prime numbers and
thus are a relevant tool to handle one-level densities. The explicit formula
of Rudnick and Sarnak [28] is in this case particularly well-suited. Their
result is stated for the base field Q, but carries on to the setting of more
general number fields without particular difficulty, so that we can state a
generalized version.

Proposition 2.1 (Explicit formula). — Let π ∈ A(G). For all φ ∈ S(R)
and R > 0,∑

ρπ

φ (γ̃π) = φ̂(0) log c(π)
logR

− 2
∑
p

∑
ν>1

(ανπ(p) + βνπ(p))φ̂
(
ν logNp

logR

)
logNp

Npν/2 logR
+O

(
1

logR

)

where the sum on the left hand side runs through the zeros ρπ = 1
2 + iγπ

of L(s, π).

Proof. The zeros of Λ(s, π) weighted by their multiplicities correspond
to the poles of Λ′(s, π)/Λ(s, π) weighted by their residues, and the explicit
formula comes from a double evaluation of the integral

(2.16) I = 1
2iπ

∫
Re(s)=2

Λ′

Λ (s, π)φ(s)ds.

The L-function decomposes as an Euler product Λ =
∏
v Lv, where

Lv(s, π) stands for L(s, πv) for simplicity. Thus, integrating its logarith-
mic derivative leads to

(2.17) I =
∑
v

1
2iπ

∫
Re(s)=2

L′v
Lv

(s, π)φ(s)ds.

Denote Iv the integrals appearing in the sum above, and first consider
the finite places. Since Lp(s, π) = (1 − απ(p)Np−s)−1(1 − βπ(p)Np−s)−1
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at every finite place, the quotient appearing in Ip can be rewritten
L′p
Lp

(s, π) = − απ(p)Np−s

1− απ(p)Np−s
logNp− βπ(p)Np−s

1− βπ(p)Np−s
logNp

= − log(Np)
∑
ν>1

(απ(p)ν + βπ(p)ν)Np−νs.

Let φ?(x) = φ(1/2 + x). Since φ is an holomorphic function, it has no
poles and thus the contour appearing in the integral (2.17) can be translated
from the vertical line of abscissa 2 to the one of abscissa 1

2 . Introduce the
inverse Mellin transformMφ of φ. Using change of variables, we get

Mφ(y) = 1
2iπ

∫
Re(s)=1/2

φ(s)y−sds

= y−1/2

2π

∫
R
φ

(
1
2 + ir

)
e−ir log ydr

= y−1/2

2π φ̂?(log y),

so that the finite local integrals become

Ip = − log(Np)
∑
ν>1

(απ(p)ν + βπ(p)ν)Mφ(Npν)

= − 1
2π
∑
ν>1

(απ(p)ν + βπ(p)ν)φ̂? (ν logNp) logNp

Npν/2 .

If φ is 1
2 -symmetrical, then letting φ∨(s) = φ(1 − s) and applying the

computations above, we have
y−1/2

2π φ̂?(− log y) = y−1/2

2π

∫
R
φ

(
1
2 − ir

)
e−ir log ydr =Mφ∨(y) =Mφ(y).

On the other hand, the Cauchy theorem allows to unfold the integral
(2.16) in terms of the zeros of Λ(s, π). Indeed, since φ is entire, the only
poles of the integrated function are the zeros of Λ and the corresponding
residues are their multiplicities. All these zeros lie in the vertical strip
−1 < Re(s) < 2, so that translating the contour through this whole band
captures all the zeros and gives

(2.18) I =
∑
ρπ

φ(ρπ) + 1
2iπ

∫
Re(s)=−1

Λ′

Λ (s, π)φ(s)ds.

The functional equation of L is of the form Λ(s, π) = επΛ(1− s, π), thus
inputing it in the integral above and changing variables to come back to

ANNALES DE L’INSTITUT FOURIER
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the vertical line of abscissa Re(s) = 2, we get

(2.19) I =
∑
ρπ

φ(ρπ)− 1
2iπ

∫
Re(s)=2

Λ′

Λ (s, π)φ(1− s)ds.

Coming back to the definition (2.17) of I, we deduce

(2.20)
∑
ρπ

φ(ρπ) = 1
2iπ

∫
Re(s)=2

Λ′

Λ (s, π)(φ(1− s) + φ(s))ds.

Finally, for an even Schwartz function φ0, the function

(2.21) φ(s) = φ0

(
logR

2π

(
s− 1

2

))
, R > 0,

is Schwartz and 1
2 -symmetric, and moreover satisfies

(2.22) φ̂?(ν logNp) = 2π
logRφ̂0

(
ν logNp

logR

)
.

The archimedean places are dealt with by the same the treatment as in
Rudnick and Sarnak with no modification, since the associated archimedean
local fields remain among R and C. It contributes as an error term plus a
factor carrying the archimedean part of the conductor. Combining the two
previous expressions of the integral,∑
ρπ

φ(ρπ) = log c(π)
2π

∫
Re(s)=2

φ(s)ds

− 1
π

∑
p

∑
ν>1

(απ(p)ν + βπ(p)ν)φ̂? (ν logNp) logNp

Npν/2 +O

(
1

logR

)

= log c(π)
logR φ̂0(0)

− 2
∑
p

∑
ν>1

(απ(p)ν + βπ(p)ν)φ̂0

(
ν logNp

logR

)
logNp

Npν/2 logR
+O

(
1

logR

)

ending the generalization of the result of Rudnick and Sarnak. �

Remark. Two different objects are deliberately denoted by π in the proof
above, namely an automorphic representation and the pythagorean con-
stant. Convinced that no confusion should arise, we preferred to stick with
the long lasting tradition of both notations.
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The explicit formula then yields, with R = c(π), the reformulation of the
one-level density

D(π, φ) = φ̂(0)

(2.23)

− 2
log c(π)

∑
p

∞∑
ν=1

(ανπ(p) + βνπ(p)) φ̂
(
ν logNp

log c(π)

)
logNp

Npν/2 +O

(
1

log c(π)

)
.

After switching summations, consider the inner sum for a fixed ν > 1,
that is to say

(2.24) P (ν)(π, φ) = 2
log c(π)

∑
p

(ανπ(p) + βνπ(p))φ̂
(
ν logNp

log c(π)

)
logNp

Npν/2 ,

so that the one-level density decomposes as

(2.25) D(π, φ) = φ̂(0)−
∑
ν>1

P (ν)(π, φ) +O

(
1

log c(π)

)
.

For a given automorphic representation π, there is only a finite number
of zeros of L(s, π) in the compact support of φ̂. Following the philosophy of
Katz and Sarnak, introduce rather the average over the truncated universal
family

(2.26) P(ν)
Q (φ) = 1

|A(Q)|
∑

π∈A(Q)

P (ν)(π, φ).

The following sections are dedicated to estimate the contribution of these
P(ν)
Q .

3. Decomposition of the universal family

3.1. Sieving the universal family

In order to prove Theorem 1.2, it is necessary to decompose the universal
family into smaller sets with fixed spectral data, amenable to trace formula
methods. The conductor of π ∈ A(G) splits into local conductors by its
very definition, in particular can be written

(3.1) c(π) = c(πR)c(πR).

ANNALES DE L’INSTITUT FOURIER



LOW-LYING ZEROS FOR QUATERNION ALGEBRAS 19

Thus, the universal family decomposes as

(3.2) A(Q) =
⊔

Nq6Q
q∧R=1

⊔
σR∈ĜR

c(σR)6Q/Nq

A(q, σR),

where the setsA(q, σR) are obtained by fixing spectral data to an arithmetic
conductor q at split places and to a ramified isomorphism class σR ∈ ĜR,
that is

A(q, σR) =
{
π ∈ A(G) : πR ' σR, c(πR) = q

}
.

This decomposition of the universal family reduces the study of A(G) to
the harmonic subfamilies A(q, σR), easier to grasp in the context of trace
formulas. The crucial point is to replace the global condition of belong-
ing to A(Q) by local conditions. For φ a Schwartz class function on R
with compactly supported Fourier transform, the above partition induces
a decomposition of the P(ν)

Q as

P(ν)
Q (φ̂ ) = 1

Q2

∑
π∈A(Q)

P (ν)(π, φ)

= 1
Q2

∑
π∈A(G)

c(πR)c(πR)6Q

P (ν)(π, φ)

= 1
Q2

∑
σR∈ĜR
c(σR)6Q

∑
Nq6Q/c(σR)

q∧R=1

∑
π∈A(q,σR)

P (ν)(π, φ)

(3.3)

where the sum over q is meant to run through ideals ofOR. Introduce P(ν)
q,σR(φ)

the innermost parts of the splitting in the first summation above, that is

(3.4) P(ν)
q,σR(φ) =

∑
π∈A(q,σR)

P (ν)(π, φ).

Remark. In the case of non totally definite quaternion algebras, this decom-
position needs to be refined by using the archimedean Langlands classifica-
tion of the unitary spectrum in order to take into account the continuous
spectrum at archimedean split places, see [4] and [19].
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Expanding the expression of P (ν)(π, φ) given by the explicit formula and
switching summations lead to
(3.5)

P(ν)
q,σR(φ) =

∑
p

 ∑
π∈A(q,σR)

(ανπ(p) + βνπ(p))

 φ̂

(
ν logNp

log c(π)

)
2 logNp

Npν/2 log c(π)
,

where c(π) stands as a shortcut notation for Nqc(σR), justifying its pres-
ence outside the sum over the harmonic subfamily A(q, σR) in which the
conductor is restricted to c(πR) = q and πR ' σR. This convention will be
steadily used in the following. Introduce the spectral sums,

Λ̃(ν)
q,σR(p) =

∑
π∈A(q,σR)

(ανπ(p) + βνπ(p)) .(3.6)

3.2. Old and new forms

The one-level density (1.10) sees no multiplicities, but the trace formula
counts them. The spectral multiplicities associated to the decomposition
of L2(G(F )\G(A)), which are more suitable weights for the forthcoming
computations, are given by

(3.7) m (π, q) = dim πK0(q),

where

(3.8) ZK0(q) =
∏
pr||q

ZpK0,p (pr) ⊆ B×
(
AR
f

)
,

and K0(q) stands for the image of ZK0(q) under the natural projection
B× → G. The choice is made so that m(π, q) 6= 0 is equivalent to c(πRf ) | q.
The analogous sum to (3.6) weighted by the multiplicities is

(3.9) Λ(ν)
q,σR(p) =

∑
π∈B(q,σR)

m (π, q) (ανπ(p) + βνπ(p)) ,

where

(3.10) B(q, σR) =
{
π ∈ A(G) : πR ' σR, c

(
πRf
)
| q
}
.

The sum defined by (3.4) runs over the newforms while (3.9) runs over
the old ones. The relation between them lies in the following lemma.
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Lemma 3.1. — Let q be an integer ideal prime to R and σR an irre-
ducible unitary representation of GR. Let λ2 = µ?µ where µ is the Möbius
function. For every Q > 1,

Λ̃(ν)
q,σR(p) =

∑
d | q

λ2

(q
d

)
Λ(ν)
d,σR

(p).

Proof. Recall that, for every finite split place p, Casselman gives the local
multiplicites of σp ∈ Ĝp,

(3.11) dim σ
K0(pf(σp)+i)
p = i+ 1, i > 0.

From this immediately follows for a σ ∈ A(G), after taking the product
over all finite split places, that the global multiplicities are

(3.12) m (σ, q) = τ2

(
q

c(σR)

)
,

where τ2 = 1?1 is the divisor function. Since
(
σR
)K0(q) 6= 0 implies c(σR)|q,

the sum defining Λ(ν)
q,σR(p) is eventually reduced to a sum over c(σR) | q.

Thus, by the precise knowledge (3.12) of the multiplicities,

Λ(ν)
q,σR(p) =

∑
d | q

∑
σ∈A(d,σR)

τ2

(
q

c(σR)

)
P (ν)(σ, φ)

=
∑
d | q

τ2

(q
d

) ∑
σ∈A(d,σR)

P (ν)(σ, φ)

=
∑
d | q

τ2

(q
d

)
Λ̃(ν)
d,σR

(p)

(3.13)

so that Λ = τ2 ? Λ̃, with a slight abuse of notation. Hence, by Möbius
inversion,

(3.14) Λ̃(ν)
q,σR(p) =

∑
d | q

λ2

(q
d

)
Λ(ν)
d,σR

(p),

achieving the proof of the claim. �

So that according to the decomposition of the universal family (3.2), the
average (2.26) can be rewritten

(3.15) P(ν)
Q (φ) = 1

|A(Q)|
∑
Nq6Q
q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

P(ν)
q,σR(φ),
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where we rewrite

P(ν)
q,σR(φ) =

∑
p

∑
d|q

λ2

(q
d

)
Λ(ν)
d,σR

(p)

 φ̂

(
ν logNp

log c(π)

)
2 logNp

Npν/2 log c(π)
.

4. High orders contributions

For ν large enough, it is possible to bound directly P (ν)(π, φ) and show
that they do not contribute to the type of symmetry.

Proposition 4.1. — For Q > 1,

(4.1)
∑
ν>3
P(ν)
Q (φ)� 1

logQ.

Proof. The main aim is to bound the spectral parameters ανπ(p) + βνπ(p)
in the sum (2.24). For holomorphic cusp forms, the Ramanujan conjecture
holds by Deligne [8] and states that |απ(p) + βπ(p)| 6 2. For Maass forms
over general number fields, Blomer and Brumley [3] proved that

(4.2) |απ(p) + βπ(p)| � Np7/64.

Hence for any cuspidal automorphic representation of GL(2) this last bound
is valid, in particular for π ∈ A(G). Thus,∑

ν>3
P (ν)(π, φ)� 1

log c(π)
∑
p

∑
ν>3

logNp

Npν(1/2−7/64)

� 1
log c(π)

∑
p

logNp

Np3(1/2−7/64)

� 1
log c(π)

Turning back to the sums over partial families, introducing the cardinality
A(q, σR) of A(q, σR) and using the fact that c(π) > Nq, we get

(4.3)
∑
ν>3
P(ν)
q,σR(φ)�

∑
π∈A(q,σR)

1
logNq

� A(q, σR)
logNq

.

The cardinality of the family A(q, σR) has been computed in our previous
work [19]: there is a remainder term R(q, σR) such that

(4.4) A(q, σR) = vol(G(F )\G(A))ϕ2(q)µPl(σR) +R(q, σR),
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where ϕ2 = λ2 ? µ
2 ? id and the remainder satisfies, for a certain θ > 0,

(4.5)
∑
q6Q

q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

R(q, σR)� Q2−θ.

Introduce the following dampening lemma, justifying that the logarith-
mic factor appearing in the denominator of (4.3) is enough to make the
whole sum negligible compared to the one free of this factor, that is to say
the cardinality of the truncated universal family |A(Q)|.

Lemma 4.2. — Let f be a positive function on the integer ideals of F ,
for which there is an α > 0 such that

(4.6)
∑
Nn6X

f(n) ∼ Xα.

Then for every ε > 0,

(4.7)
∑
Nn6X

f(n)
log(Nn)ε �

1
log(X)ε

∑
Nn6X

f(n).

Proof. The hyperbola method can be efficiently used in this setting. Cut-
ting the sum at X1/2 for a positive X leads to

∑
Nn6X

f(n)
log(Nn)ε =

∑
Nn6X1/2

f(n)
log(Nn)ε +

∑
X1/2<Nn6X

f(n)
log(Nn)ε

�
∑

Nn6X1/2

f(n) + 1
log(X)ε

∑
X1/2<Nn6X

f(n)

� 1
log(X)ε

∑
Nn6X

f(n).

Indeed, the asymptotic assumption (4.7) yields

(4.8)
∑

Nn6X1/2

f(n)� Xα/2 � Xα

log(X)ε �
1

log(X)ε
∑
Nn6X

f(n),

proving the lemma. �



24 DIDIER LESESVRE

So after summations of the contributions of the sieved families (4.4),
Lemma 4.2 provides the bound∑

ν>3
P(ν)
Q (φ) = 1

Q2

∑
Nq6Q
q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

∑
ν>3
P(ν)
q,σR(φ)

� 1
Q2

∑
σR∈ĜR
c(σR)6Q

∑
Nq6Q/c(σR)

q∧R=1

A(q, σR)
logNq

� 1
Q2

∑
σR∈ĜR
c(σR)6Q

µPl(σR)
∑

Nq6Q/c(σR)
q∧R=1

ϕ2(q)
logNq

+ 1
Q2

∑
σR∈ĜR
c(σR)6Q

∑
Nq6Q/c(σR)

q∧R=1

R(q, σR)

� 1
logQ

∑
σR∈ĜR
c(σR)6Q

log c(σR)
c(σR)2 µPl(σR) +Q−θ

and the sum over the ramified spectrum converges by [19]. This ends the
proof of Proposition 4.1. �

Remark. Analogously to the work of Iwaniec, Luo and Sarnak [13] and most
of the literature on low-lying zeros, the high order terms are negligible,
with a logarithmic savings. This bound follows from directly dominating
P (ν)(π, φ) without use of neither the average over the family nor the sum
over the primes.

5. Hecke operators

5.1. Hecke eigenvalues and coefficients

For the two remaining cases ν = 1 and ν = 2, straightforward estimations
are no more sufficient, feature already present in the axiomatic proposed
by Dueñez and Miller [10] for the behavior of low-lying zeros in families of
L-functions. The inner spectral sums

(5.1)
∑

π∈B(q,σR)

m(π, q) (ανπ(p) + βνπ(p))
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are closely related to traces of Hecke operators, so that P(ν)
q,σR(φ) should

be interpreted as a spectral side of a trace formula. Define the normalized
Hecke operators as

(5.2) Tpν = Np−ν/21T (pν) where T (pν) =
⋃

i+j=ν
06i6j

Kp

(
pi

pj

)
Kp.

The Hecke operator for a global ideal n of O is defined by

(5.3) Tn =
∏
pr||n

Tpr .

One of the main appeal of Hecke operators is that they provide an ex-
plicit recipe to catch the coefficients of L-functions. Indeed, they satisfy the
same induction relation, hence are equal once suitably normalized. This is
the content of the following standard proposition. Recall that the coeffi-
cients of the Dirichlet series attached to an automorphic representation are
normalized no that aπ(1) = 1.

Proposition 5.1. — Let n be an ideal of O and π be an unramified
representation at the places dividing n. Introduce λπ(n) the eigenvalue of Tn
acting on π. Then ,

(5.4) aπ(n) = λπ(n).

Moreover, if π is ramified at one of the places dividing n, then Tn acts by
zero on π.

Proof. The Tpn satisfy [5, Prop 4.6.4] the recursive relation

(5.5) Tpn+1 = TpTpn − Tpn−1 , n > 1,

which transfers at the Hecke eigenvalues level and gives

(5.6) λπ(pn+1) = λπ(p)λπ(pn)− λπ(pn−1), n > 1.

Recall that, by the Euler product decomposition of L(s, π), the coeffi-
cients aπ(n) are entirely determined by their values at the prime powers pn.
Moreover, the centerless setting implies a trivial central character and hence
the Satake parameters are related by απ(p) = βπ(p)−1. Let α be a short-
ened version of απ(p). The local L-factors are

Lp(s, π) = (1−αNp−s)−1(1−α−1Np−s)−1 =

∑
i>0

αiNp−is

∑
j>0

α−jNp−js

 .
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By unfolding the power series, the coefficient of Npns is

(5.7) aπ(pn) =
∑
i+j=n

αi

αj
.

A straightforward computation hence leads to the recursion relation

(5.8) a(pn+1) = a(p)a(pn)− a(pn−1).

Since this is the same relation than for the Hecke eigenvalues (5.5), the
two sequences are proportional. Moreover, p-unramified newforms are nor-
malized so that aπ(1) = λπ(1) = 1, leading to the equality of both se-
quences as claimed. The second part of the proposition is straightforward,
since the Tp are the unramified Hecke operators, in particular are bi-Kp-
invariants, and so project on Kp fixed vectors, which are reduced to zero
for p-ramified representations. �

5.2. Spectral selection

The above proposition states that Hecke eigenvalues are a way to inter-
pret the coefficients of an automorphic representation. Since these coeffi-
cients are related to the Satake parameters by the Euler product develop-
ment, this fact provides a way to handle the sums Λ(ν)

q,σR(p). In order to
make this question amenable to the trace formula method, it is necessary
to have a grasp on these quantities by means of Fourier transforms. This
is provided by the following standard proposition.

Lemma 5.2. — Every Kp-spherical vector v in a representation πp is an
eigenvector for all the Hecke operators Tnp . Moreover, for every ν > 0,

(5.9) T̂pν (πp) =
{
λπ(pν) if πp is unramified at p;

0 otherwise.

The appearing dissymmetry between the ramified and unramified cases
motivates the introduction of

Λ(ν),ur
q,σR (p) =

∑
π∈B(q,σR)

m(π, q)λπ(pν)(5.10)

Λ(ν),r
q,σR(p) =

∑
π∈B(q,σR)r,p

m(π, q) (ανπ(p) + βνπ(p))(5.11)
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where B(q, σR)r,p denotes the subset of B(q, σR) composed of its represen-
tation ramified at p. Note that the sum in Λ(ν),ur

q,σR (p) is in fact restricted to
representations unramified at p since, by Lemma 5.2, we have λπ(pν) = 0
for representations ramified at p. Introduce the analogous notations for
Λ̃(ν),ur
q,σR (p) and Λ̃(ν),r

q,σR(p).

5.3. Sums of Hecke eigenvalues

The previous section showed that Hecke operators lead to a reformulation
of the spectral parameters in terms of Hecke eigenvalues in the case of
unramified representations. Introduce P(ν),ur

q,σR to be the contribution of the
unramified part of the spectrum to P(ν)

q,σR(φ), namely
(5.12)

P(ν),ur
q,σR (φ) =

∑
p

 ∑
π∈B(q,σR)
π unram at p

(ανπ(p) + βνπ(p))

 φ̂

(
ν logNp

log c(π)

)
2 logNp

Npν/2 log c(π)
.

5.3.1. Relation in the case ν = 1

Since απ(p) + βπ(p) = λπ(p) for unramified representations, the corre-
sponding total sum in P(1),ur

q,σR can be rewritten as

(5.13) P(1),ur
q,σR (φ) =

∑
p

Λ̃(1),ur
q,σR (p)φ̂

(
logNp

log c(π)

)
2 logNp√
Np log c(π)

.

5.3.2. Relation in the case ν = 2

By identification of the corresponding expressions of the local L-factor
(2.15) follows the relation α2

π(p)+β2
π(p) = λπ(p2)−1 holding for unramified

representations. So that the sum over primes splits as

P(2),ur
q,σR (φ) =

∑
p

Λ̃(2),ur
q,σR (p)φ̂

(
2 logNp

log c(π)

)
2 logNp

Np log c(π)(5.14)

−
∑
p

φ̂

(
2 logNp

log c(π)

)
2 logNp

Np log c(π) .



28 DIDIER LESESVRE

The fact that φ̂ is even and compactly supported in (−Tφ, Tφ) allows to
write ∫ Tφ

0
φ̂ = 1

2

∫
R
φ̂ = 1

2φ(0).

By the Mertens estimates and integration by parts, the second sum in
the right hand side rewrites

∑
p

φ̂

(
2 logNp

log c(π)

)
2 logNp

Np log c(π) = 1
log c(π) φ̂

(
2 log c(π)Tφ/2

log c(π)

)

− 2
log c(π)

∫ c(π)Tφ/2

1

∑
p6t

logNp

Np

 ∂tφ̂

(
2 log t

log c(π)

)
dt

= − 2
log c(π)

∫ c(π)Tφ/2

1
(log(t) +O(1))∂tφ̂

(
2 log t

log c(π)

)
dt

= − 2
log c(π)

∫ c(π)Tφ/2

1
φ̂

(
2 log t

log c(π)

)
dt
t

+O

(
1

log c(π)

)
= 1

2φ(0) +O

(
1

log c(π)

)
.

The expression (5.14) of P(2),ur
q,σR is hence reduced to

P(2),ur
q,σR (φ) =

∑
p

Λ(2),ur
q,σR (p)φ̂

(
2 logNp

log c(π)

)
2 logNp

Np log c(π)(5.15)

− 1
2φ(0) +O

(
1

log c(π)

)
.

Remark. The extra contribution 1
2φ(0) is crucial, and will be shown to be

the only non-archimedean contribution to the type of symmetry. It is no
surprise that the relations between Satake parameters and coefficients, as
a specific property of each family, have an impact on the type of symmetry.
This feature is already present in many classical works on low-lying zeros
and its appearance when estimating the second moment has been explained
by Dueñez and Miller [10].
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6. Trace formula

6.1. Selberg trace formula

Since the automorphic quotient of G is compact, the original formulation
of the trace formula, due to Selberg [1], can be used and combined with the
multiplicity one theorem. If Φ is a function in the Hecke algebra H(G(A)),
then

(6.1) Jgeom(Φ) = Jspec(Φ),

where the spectral and geometric parts are as follows. The geometric part
is

(6.2) Jgeom(Φ) =
∑
{γ}

vol (Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

Φ
(
x−1γx

)
dx,

where the sum runs through conjugacy classes {γ} in G(F ). Since Φ is
compactly supported and G(F ) is discrete, the sum is finite. However its
length depends on the support of Φ what turns to be a critical difficulty
for estimations, for this support will depend on the spectral parameters,
see Section 7.1. The integrals appearing in this geometric side are called
the orbital integrals, defined by

(6.3) Oγ(Φ) =
∫
Gγ(A)\G(A)

Φ
(
x−1γx

)
dx.

The spectral part is

(6.4) Jspec(Φ) =
∑

π⊆L2(G(F )\G(A))

m(π)Φ̂(π).

Here π runs through the isomorphism classes of unitary irreducible subrep-
resentations in L2(G(F )\G(A)), and Φ̂ is the Fourier transform of Φ, see
Section 2.2.

In order to have a problem amenable to the trace formula it is necessary
to interpret statistics quantities on the universal family as a spectral side,
hence needed to select it by the Fourier transforms of suitable test functions.
The aim of the present section is to construct a function Φ ∈ H(G) such
that, up to an error term,

Jspec(Φ) ' Λ(ν),ur
d,σR

.(6.5)
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In the case of factorizable test functions Φ = ⊗vΦv, the spectral side of the
trace formula factorizes as

(6.6) Φ̂(π) =
∏
v

Φ̂v(πv).

Hence, in order to achieve the spectral selection (6.5) it is sufficient locally
select the conditions appearing in the decomposition of the universal family
(3.2) through Fourier transforms. The following sections are dedicated to
construct local test functions doing so, aim reached in Lemma 6.4.

6.2. Selecting the split conductor

For an ideal d of O, introduce the congruence subgroup given by the
product of the corresponding local congruence subgroups in (2.1), that is
to say

(6.7) K0(d) =
∏
pr||d

K0,p(pr).

The following result gives a test function whose Fourier transform selects
the finite split conductor with multiplicities, in particular vanishes if c(π)
does not divide a fixed ideal d, see for instance [19].

Lemma 6.1. — For an ideal d of O, let

(6.8) εd = vol
(
K0(d)

)−1 1K0(d).

Its Fourier transform selects the multiplicity relative to d. More precisely,

(6.9) ε̂d(π) = m(π, d), π ∈ A(G).

6.3. Selecting the ramified part

For ramified places, the matrix coefficients allows to select the desired
isomorphism class of supercuspidal representations in the following sense,
see [17, Corollary 10.26]. Let σ be a unitary representation of GR. A matrix
coefficient associated to σR is a function of the form, given v and w in the
space of σ,

(6.10) ξv,wσ : GR −→ C
g 7−→ 〈σ(g)v, w〉.
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Matrix coefficients are continuous functions on GR, compactly supported
since GR is compact, and locally constant at finite places and smooth at
archimedean places.

Remark. The fact that matrix coefficients are considered only for ramified
places is crucial for selecting purposes. The loss of the compactness of the
support for matrix coefficients if there were archimidean split places, where
non supercuspidal automorphic representations do exist, would make them
fail to select the corresponding isomorphism class. Such a purpose can be
achieved by means of existence theorems, for instance the Clozel-Delorme
[7] version of the Paley-Wiener theorem, at the expense of the precise form
of the function. This is the reason why the non-totally definite case or the
GL(2) case are analytically harder to deal with.

Lemma 6.2. — Let σ and π be automorphic representations of GR, and
introduce dπ the formal degree of π. Then for every unit vectors v and w
in the representation space of σ,

(6.11) π (ξv,wσ )w = 1π'σ
〈w, v〉
dπ

v.

Taking for v a vector of norm d
1/2
π , it follows that π (ξv,vσ ) is the orthog-

onal projection onto Cv and in the meanwhile selects the π’s isomorphic
to σ. Considering its trace, this can be restated as follows.

Lemma 6.3. — Let σ and π be automorphic representations of GR.
Let v be a vector of norm one in the representation space of σ. Then,

(6.12) ξ̂v,vσ (π) = 1π'σ.

From now on, denote ξσ any choice of matrix coefficient as in Proposi-
tion 6.3.

6.4. The chosen test function

Let d be an ideal of OR, σR a representation of ĜR and p a prime ideal
out of R. Introduce the test function

(6.13) Φ(ν),ur
d,πR

(p) =
∏
v

Φv,

which is built with the following local functions:



32 DIDIER LESESVRE

Places v Local test function Φv
/∈ R, 6= p εd,v

∈ R, 6= p ξπv

p Tpν

where

• εd is the function introduced in Section 6.2, εd,v its v-component;
• ξπv is a matrix coefficient for πv, see Section 6.3;
• Tpν is the Hecke operator, see Section 5.1.

Lemma 6.4. — Let Q > 1. Let d ∧R = 1 and σR ∈ ĜR. Then

(6.14) Jspec

(
Φ(ν),ur

d,πR
(p)
)

= Λ(ν),ur
q,σR (p) +O(Np−ν/2Ξ(σR)),

where, introducing the set Xur(G) of unramified characters of G(A),

(6.15) Ξ(πR) =
∑

χ∈Xur(G)
χR'πR

1.

Proof. Let Φ = Φ(ν),ur
d,πR

(p). In order to determine the Fourier transform
of Φ recall that for every places v, w and every a ∈ H(Gv,w), âvaw = âvâw.
Thus,

(6.16) Φ̂ =
∏
v

Φ̂v = T̂p
∏
v∈R
v 6=p

ξ̂πv
∏
f/∈R
f6=p
fr||d

ε̂fr,v.

Hence only the Fourier transforms of the local components of the test
function have to be determined. The split part εd transforms into the char-
acteristic function of conductors dividing d weighted by the correspond-
ing multiplicities by Lemma 6.1. The ramified local parts ξπv transforms
into the characteristic functions of the isomorphism class of πv by Lemma
6.3. The Hecke operators transforms into the selecting function of un-
ramified representation weighted by their associated Hecke eigenvalue by
Lemma 5.2. The action of the Fourier transform of Φ follows, namely

(6.17) Φ̂(σ) = m(σ, d)λπ(pν)1 σR'πR
p-c(σR) | d

.

Nevertheless, these conditions also stand for characters: in order to not
being killed by Φ̂ they have to be trivial on K0(d), i.e. they have to be
unramified since det(K0(d)) ⊆ OR and det(T (pν)) ⊆ Op. Moreover, they
have to be isomorphic to πR at ramified places. The Fourier transform of the
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chosen test function hence does not vanish on unramified characters, unlike
awaited. The corresponding extra contribution Ξ(πR) is treated separately
in Lemma 6.5 below. After summing over the spectrum, it follows

(6.18) Jspec(Φ) =
∑

σ∈B(d,πR)

m(σ, d)λσ(pν) +O

 ∑
χ∈Xur(G)
χR'πR

1


and that achieves the proof. �

6.5. Contribution of characters

We now treat the extra contribution of characters.

Lemma 6.5. — We have the following estimate, for every ε > 0 and
every Q > 1,

1
Q2

∑
Nq6Q
q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

∑
d|q

λ2

(q
d

)
Ξ(σR)� Q−1+ε.

Proof. Similarly to the intervention of the trace formula in Lemma 6.4
above, we use the Poisson summation formula in order to count characters.
We seek a test function such that the spectral side gives Ξ(πR). We work
on F× instead of Z\F× for simplicity, characters of Z\F× corresponding
to those of F× trivial on the center.

At archimedian places, the trivial action on the center implies they are
among the trivial one and the sign, hence have conductor 1 at those places.
Archimedean characters are of the form χε,t = sgnε|det|it for ε ∈ {0, 1} and
t ∈ R. Let us introduce fT,v, for v an archimedean place, a non-negative
smooth function such that f̂T,v is compactly supported, takes values 1
for t = 0, and |f̂T,v| 6 1. In particular, considering it as a function on
archimedean characters, we get that f̂T,v(sgnε|det|it) is 1 for t = 0, and
vanish unless t is small enough, say |t| 6 T .

At a finite split place p, every character χp can be written as χ0 ◦ det.
Since the determinant of K0,p(pr) is OR×, the effect of ε̂pr is to select
characters χ0 unramified out of R. Introduce fR to be the characteristic
function ofOR×, so that its Fourier transform selects unramified characters,
by mimicking the proof of Lemma 6.1. For ramified places, introduce fπv
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to be the matrix coefficient associated to πv, so that its Fourier transform
selects characters locally isomorphic to πv as in Lemma 6.3. Introduce

(6.19) fT,πR = fR
∏
v|∞

fT,v
∏
v∈R

fπv .

Since the f̂v are non-negative and take value 1 on characters either un-
ramified at split places or isomorphic to πv at ramified places, the Poisson
formula gives

Ξ(πR) 6
∑
χ∈F̂×

f̂T,πR(χ) = 1
vol(F×\A×)

∑
γ∈F×

fT,πR(γ).

Since F× is a discrete set, choosing the archimedean components fT,v
with a small enough support leads to kill every fT,v(γ) for γ nontrivial.
Hence Ξ(πR) 6 vol(F×\A×)−1fπR(1). The ramified part can be written as
a Plancherel measure by the Plancherel inversion formula,

(6.20) fπR(1) =
∫
ĜR

1σ'πRdσ = µPl(πR).

Finally, coming back to the sum over all spectral data, we get

1
Q2

∑
Nq6Q
q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

∑
d|q

λ2

(q
d

)
Ξ(σR)

� 1
Q2

∑
Nq6Q
q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

∑
d|q

λ2

(q
d

)
µPl(σR)

� 1
Q2

∑
σR∈ĜR
c(σR)6Q

µPl(σR)
∑

Nq6Q/c(σR)
q∧R=1

∑
d|q

λ2 (d)

� 1
Q2

∑
σR∈ĜR
c(σR)6Q

µPl(σR)
∑

Nq6Q/c(σR)
q∧R=1

µ(q)

� 1
Q1−ε

∑
σR∈ĜR
c(σR)6Q

µPl(σR)
c(σR)1+ε

and this last sum over the ramified spectrum converges by [19]. �
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7. Low orders contributions

7.1. Unramified part

It remains to evaluate the sums of orders 1 and 2, displayed in (5.13)
and (5.15). Lemma 6.4 is the main tool for these evaluations, ultimately
reducing the problem to the study of the geometric side of the trace formula.

Proposition 7.1. — For φ an even Schwartz function whose Fourier
transform has compact support in (−2/3, 2/3), and for ν ∈ {1, 2},

(7.1) P(ν),ur
Q (φ)� 1

logQ.

The remainder of this section is dedicated to the proof of this proposi-
tion. The result obtained in Lemma 6.4 states that, up to an error term,
the sought spectral sums Λ(ν),ur

q,σR (p) can be approximated by the spectral
side (6.4). Recall that the Selberg trace formula states that this spectral
part Jspec(Φ(ν),ur

q,πR (p)) is equal to the corresponding geometric side, which
decomposes as

(7.2) Jgeom

(
Φ(ν),ur

q,πR (p)
)

= J1

(
Φ(ν),ur

q,πR (p)
)

+ Jell

(
Φ(ν),ur

q,πR (p)
)
,

where the identity and elliptic terms are defined as

J1

(
Φ(ν),ur

q,πR (p)
)

= vol(G(F )\G(A))Φ(ν),ur
q,πR (p)(1)

Jell

(
Φ(ν),ur

q,πR (p)
)

=
∑

{γ}⊂G(F )
γ 6=1

vol(Gγ(F )\Gγ(A))
∫
Gγ(A)\G(A)

Φ(ν),ur
q,πR (p)(x−1γx)dx.

Since the identity lies outside the double classes T (pν) defining the Hecke
operator, J1(Φ(ν),ur

q,πR (p)) vanishes. The elliptic terms are bounded in the
following lemma.

Lemma 7.2. — For all γ ∈ G(F ), q ideal ofOR, σR ∈ ĜR and ν ∈ {1, 2},

(7.3) Oγ(Φ)�ε NqεNpν/2.

Proof. The orbital integrals factorize as a product of local ones: for a
function Φ = ⊗vΦv in H(G),

(7.4) Oγ(Φ) =
∏
v

Oγv (Φv).



36 DIDIER LESESVRE

For ramified places, the associated local orbital integrals are uniformly
bounded. This amounts to bound characters on SU(2) and this is a direct
consequence of the Weyl character formula, see [19]. For the finite split
places, bounds are provided by Binder [2]: for a prime ideal f different from
p and every ε > 0,

(7.5) Oγf
(

Φp,ν
q,σR,f

)
� N fε.

As for the p-component of the test function, the orbital integral associ-
ated with the Hecke operator Tpv is explicitly computed by Kottwitz [24,
Lemma 12.12], and yields

Oγp
(
Φp,ν

q,σR,p

)
= Oγp (Tpν )

= Np−ν/2Oγp
(
1T (pν)

)
� Npν/2. �

It is necessary to estimate the length of the sum over the elliptic conjugacy
classes. In critical contrast with the previous article [19], for difficulties
arise due to the presence of Hecke operators. Indeed, the support of the
test function Φ, in particular of the Hecke operators Tpν , are not uniformly
supported in a compact as it is the case for the congruence subgroups. It is
hence necessary to unveil the dependence on p when bounding the length
of the sum and the global volumes. Even if general results due to Matz
and Templier [24] supply bounds in this case, the particular GL(2)-setting
allows to be more precise and to obtain slightly better results.

Lemma 7.3. — The number of conjugacy classes {γ} such that the or-
bital integral Oγ(Φ(ν),ur

q,πR (p)) is nonzero is uniformly bounded in q and σR.
As for the p-aspect, it is bounded by Npν/2+ε for every ε > 0.

Proof. The demonstration is a refinement of the counting argument pro-
vided by Matz [23, Lemma 6.10]. Let us lift the setting for convenience: an
automorphic representation in A(G) is viewed as a cuspidal automorphic
representation of PGL(2) by the Jacquet-Langlands correspondence, which
is viewed as a cuspidal automorphic representation of GL(2) with trivial
central character.

Counting the G(F )-conjugacy classes is equivalent to counting the associ-
ated characteristic polynomials. Let γ be a representative of a contributing
conjugacy class, that is to say such that Oγ(Φ) does not vanish. By defini-
tion of the test function, at all non-archimedean places γv is a matrix with
integer entries, for either γf ∈ K0,f(rt) for a certain t and an ideal r prime
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to p, or γp ∈ T (pν), both consisting of matrices with integer coefficients.
Hence its characteristic polynomial Pγ has coefficients in all the integers
rings Or, hence in the integer ring of F . Introduce

(7.6) Pγ = X2 + aγX + bγ , αγ , bγ ∈ O.

Turning to the archimedean places, the test function is compactly sup-
ported modulo the center. Hence, up to normalizing the determinant to
one by replacing γ by γ̃ = γ|det γ|−1/2, the set of the contributing γ̃ lies
in a fixed compact set, hence also the coefficients of the associated char-
acteristic polynomials. In particular, the linear coefficient aγ̃ is a bounded
integer, and turning back to γ we get

(7.7) |aγ |∞ � |det γ|1/2
∞ .

The fact that γp lies in the Hecke double class T (pν) and the others γq in
the maximal compact subgroup Kq fixes the value of the non-archimedean
norms of the determinant at each place , equal to pν at the place p, and
to one at the other finite places. Since the determinant of γ lies in F , the
product formula yields

(7.8) |aγ |∞ � |detγ|1/2
∞ =

∏
f

|det γ|−1/2
f = |det γ|−1/2

p = Npν/2.

As for the factor bγ , since it lies in the Hecke double class T (pν), the
same argument as above ensures that bγ is of archimedean norm equal to
Npν . Therefore, by an application of Dirichlet’s unit theorem, the number
of choices for bγ is bounded by a power of logNp. �

Moreover, the global volumes have been precisely bounded by Matz [22,
Section 9] in the specific case of GL(2): if γ is in the support of Φ, the
volume vol(Gγ(F )\Gγ(A)) is dominated by Npε for all ε > 0. The bounds
on the number of contributing classes obtained in Lemma 7.3 along with
the bounds on orbital integrals at other places obtained in Lemma 7.2 imply
that, for every ε > 0,

(7.9) Λ(ν),ur
q,σR (p)� Npν+ε (Nq)ε +O

(
Npν/2+εΞ(σR)

)
.

The action of φ̂ in the explicit formula, since compactly supported in
(−Tφ, Tφ), ensures a sum over primes running until c(π)Tφ/ν in the explicit
formula (5.12). Plugging the above bounds in the definition of P(ν),ur

q,σR (φ),
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the prime number theorem implies that

P(ν),ur
q,σR (φ)� Nqε

∑
p

|φ̂|
(
ν logNp

log c(π)

)
logNp

log c(π)Npν/2+ε

� Nqε
c(π)3Tφ/2+ε

log c(π) .

After summation over q, it is negligible compared to |A(Q)| if

(7.10) 1
Q2

∑
Nq6Q
q∧R=1

∑
σR∈ĜR

c(σR)6Q/Nq

∑
d | q

Ndε
c(π)3Tφ/2+ε

log c(π) −−−−→
Q→∞

0,

and this happens for Tφ 6 2/3 − ε for any ε > 0, giving the desired
result. �

7.2. Ramified part

It remains to estimate the contribution of p-ramified representations to
the spectral sum. This is the content of the following proposition.

Proposition 7.4. — For every Q > 1 and ν > 1,

(7.11) P(ν),r
Q (φ)� Q2

log(Q)ν(1/2−7/64) log logQ.

Proof. By definition of the conductor, π is ramified at p if and only if p
divides its arithmetic conductor. Hence, using the Blomer-Brumley bound
and the counting law (4.4),

Λ̃(ν),r
q,σR(p) = 1p|q

∑
π∈A(q,σR)

(ανπ(p) + βνπ(p))

� 1p|qNp7ν/64A(q, σR)

� 1p|qNp7ν/64ϕ2(q)µPl(σR) + 1p|qNp7ν/64R(q, σR).

That leads to, after summing over the primes,

(7.12) P(ν),r
q,σR (φ)� ϕ2(q)µPl(σR)

log(Nqc(σR))
∑
p|q

logNp

Npν(1/2−7/64) .

Lemma 7.5. — For every 0 < s 6 1 and every q,

(7.13)
∑
p|q

log(Np)
Nps

� log(Nq)1−s log logNq.

ANNALES DE L’INSTITUT FOURIER



LOW-LYING ZEROS FOR QUATERNION ALGEBRAS 39

Proof. This is a straightforward application of the hyperbola method.
Indeed, for Y > 0, partial summation gives∑

p|q

log(Np)
Nps

=
∑
p|q

Np6Y

log(Np)
Nps

+
∑
p|q

Np>Y

log(Np)
Nps

�
∑
Np6Y

log(Np)
Nps

+
∑
p|q

Np>Y

log(Np)
Nps

�
∑
Np6Y

Np1−s(log(Np + 1)− logNp) + 1
Y s

∑
p|q

logNp

� max
(
Y 1−s,

logNq

Y s

)
,

and this quantity is optimized for Y = logNq, which gives the claimed
statement. �

This applied to (7.12) imples that, for every q and σR,

(7.14) P(ν),r
q,σR (φ)� ϕ2(q)µPl(σR)

log(Nq)ν(1/2−7/64) log logNq.

Applying now Lemma 4.2 when summing over the spectral data yields
that for every ε > 0,

(7.15) P(ν),r
Q (φ)� log logQ

log(Q)ν(1/2−7−64)

∑
σR∈ĜR
c(σR)6Q

µPl(σR)
c(σR)2−ε ,

and this sum over the ramified spectrum converges by [19], ending the
proof. �

Remark. If the automorphic representation π is ramified at p, then πp is
either a supercuspidal representation, a unitary twists of the Steinberg
representation, or a unitary principal series. The two first cases are known
to be tempered, so that the exponent 7/64 could be replaced by ε. However,
suitable unitary twists of a non-tempered unramified representation are
ramified yet non-tempered. To rule out this case, a finer argument involving
the support of the Fourier-Plancherel transform arising in the spectral side
of the trace formula would be necessary. The above proof has the appeal of
being both sufficient and uniform for all representations. We are grateful
to the referee for having been the source of these comments.
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In the explicit formula (2.23), there is a nontrivial contribution from
the second order terms obtained in (5.15), all the other terms being neg-
ligible by Propositions 7.1 and 7.4. Altogether this achieves the proof of
Theorem 1.2.

8. Non-vanishing of L-functions

The knowledge of the type of symmetry in Theorem 1.2 leads to fur-
ther statistics on the family of L-functions associated to representations in
A(G). Following Iwaniec, Luo and Sarnak [13], it opens the path to bounds
on the density of non-vanishing at the central point. Introduce

(8.1) pm(Q) = 1
|A(Q)|#

{
π ∈ A(Q) : ord

s=1/2
L(s, π) = m

}
, m > 0.

This section is dedicated to the proof of the following corollary.

Corollary 1.3. — Let B a totally definite quaternion algebra and
assume the generalized Riemann hypothesis. We have

(1.5) lim inf
Q→∞

∑
m>1

mpm(Q) 6 2.

Proof. The proportion of vanishing at the central point could be esti-
mated by approximating the Dirac mass φ = δ0 in the one-level density
limiting behavior (1.3). The Plancherel formula restates the asymptotic
one-level density, for a Schwartz function φ, as

(8.2)
∫

R
φ(x)WO(x)dx =

∫
R
φ̂(y)ŴO(y)dy.

The proportion of vanishing at the central point, counted with multiplic-
ities, can be bounded as follows. Introduce the functions

(8.3) φ(x) =
(

sin (πTφx)
πTφx

)2
and φ̂(y) = 1

Tφ

(
1− |y|

Tφ

)
1|y|<Tφ

as in [13, equation (1.42)]. Then φ is a non-negative function over R so
that φ(0) = 1, i.e. δ0 6 φ over R. The generalized Riemann hypothesis
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amounts to say that all the γπ are real so that, for all Q > 1,∑
m>1

mpm(Q) = 1
|A(Q)|

∑
π∈A(Q)

∑
γπ

δ0(γπ)

6
1

|A(Q)|
∑

π∈A(Q)

∑
γπ

φ(γπ)

6
1

|A(Q)|
∑

π∈A(Q)

D(π, φ).

Let φ be an even and Schwartz class function on R, with Fourier transform
supported in (−2/3, 2/3). By the density result (1.3) and the Plancherel
formula (8.2), for every ε > 0 and for Q sufficiently large,

1
|A(Q)|

∑
π∈A(Q)

D(π, φ) 6
∫

R
φ(x)WO(x)dx+ ε

6
∫

R
φ̂(y)ŴO(y)dy + ε.

Iwaniec, Luo and Sarnak [13, Appendix A] showed that the function φ
chosen above is an optimal choice among functions supported in (−Tφ, Tφ)
for the orthogonal symmetry type. They computed

(8.4)
∫

R
φ̂(y)ŴO(y)dy = 1

Tφ
+ 1

2 ,

so that, since it is possible to chose a test function with Fourier transform
compactly supported in (−Tφ, Tφ) with Tφ = 2/3 by Theorem 1.2, we
deduce from the above, by letting ε go to zero, that

(8.5) lim inf
Q→∞

∑
m>1

mpm(Q) 6 1
2 + 1

Tφ
= 2,

and this proves Corollary 1.3. �

Remark. The very definition of these proportions gives the for every Q > 1,

(8.6)
∑
m>0

pm(Q) = 1.

This implies a lower bound for the non-vanishing proportion

p0(Q) >
∑
m>0

pm(Q)−
∑
m>0

mpm(Q)

> 1−
∫

R
φ̂(y)ŴO(y)dy − ε,
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so that using the optimal choice of function φ as above it yields, for φ̂
supported in (−Tφ, Tφ),

(8.7) lim inf
Q→∞

p0(Q) > 1
2 −

1
Tφ
,

providing a family of bounds depending on the function φ. The bound on
the support of the Fourier transform of φ̂ by 2/3 is too small to yield a
nontrivial result on p0(Q). Enlarging the support for the Fourier transform
is expected to be a challenge since off-diagonal terms enter into account in
the trace formula.
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