
LECTURE 3 — THEORY OF LOCAL NEWFORMS FOR GL(n)

TALK BY DIDIER LESESVRE

Abstract. I will introduce some tools and ideas at the heart of the paper of Jacquet-
Piatetski-Shapiro and Shalika, establishing the theory of local newforms on GL(n). The
good properties of Whittaker functions make them have a “Fourier transform” that is
polynomial in certain parameters. The existence (and other properties) of newforms can
then be rephrased as properties on polynomials, and this point of view is the key of the
proofs.

1. Landscape and L-factors

1.1. Setting. Let F be a non-Archimedean local field, O its ring of integers. Let ψ be a
nontrivial additive character of F of conductor O. Let Gr = GLr(F ) and consider π and
irreducible admissible generic representation of Gr.

1.2. L-factors. We define L-factors from suitable zeta integrals. In the case of the
(GLr,GLr−1) strong Gelfand pair, for π (resp. π′) an irreducible generic representa-
tion of Gr (resp. Gr−1) and for Whittaker functions W ∈ W(π) (resp. W ′ ∈ W(π′)),
introduce the (Rankin-Selberg) zeta integral

Z(s,W,W ′) =

∫
N\G

W

(
g

1

)
W ′(g)|g|s−1/2dg. (1)

Remark. Recall that this definition comes from the global zeta integrals Z(s, φ, φ′) on
G(F )\G(A), that factorize as Euler products into integrals on N(F )\G(F ), after using
the Fourier expansion of the automorphic form φ.

Remark. More generally, if we are not in the case of (GLr,GLr−1), but of (GLr,GLk) for
k < r − 1, a similar definition holds with the first factor that has to be projected on the
smaller group by an integration process, see Cogdell’s notes and Duc Nam’s talk in the
previous semester. The whole theory holds similarly in this case.

The Godement-Jacquet theory leads to the following properties, as a consequence of
the properties of the Whittaker functions W and W ′:

Proposition. We have the following:

• the zeta integrals ψ(s,W,W ′) converges for <(s) > 1
• ψ(s,W,W ′) ∈ C(q−s), in particular extends meromorphically to all C
• the vector subspace I(π × π′) of C(q−s) generated by the ψ(s,W,W ′), for W ∈
W(π, ψ) and W ′ ∈ W(π′, ψ−1), is a C[qs, q−s]-fractional ideal
• the ideal I(π×π′) admits a generator of the form Pπ×π′(q

−s) where Pπ×π′ ∈ C[X]
is so that Pπ×π′(0) = 1
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This motivates to consider:

Definition. We denote L(s, π×π′) = Pπ×π′(q
−s)−1 the Rankin-Selberg L-factor attached

to π × π′. We define L(s, π) = L(s, π × χ0) where χ0 is the trivial character.

The L-factor L(s, π) is henceforth the “common denominator” of all the elements in
the ideal 〈ψ(s,W )〉. Being an element of the vector space I(π), we only know that there
is a finite sum such that

L(s, π) =
∑
i

ψ(s,Wi). (2)

One of the fundamental questions we are addressing here is the one of the existence of
W ∈ W(π) such that L(s, π) = ψ(s,W ).

1.3. Conductors. Another fundamental property of the L-factors (as a consuence of the
analogous property on zeta integrals) is the functional equation

L(s, π) = επ(s, π, ψ)L(1− s, π̃) (3)

where the epislon factor is in fact a monomial

επ(s, π, ψ) = Cq−ms (4)

for a certain constant C (depending on ψ) and m ∈ Z (independent of ψ).

Example. (The case r = 1) If r = 1, then π is a character of F× and it is known that
r > 0. For m = 0, we say π is unramified and it is trivial on O. For m > 0, it is ramified
and it is trivial on 1 + pn for a certain n > 1, but not on 1 + pn−1. We can prove that
m = n in (4), so that the notion of conductor (coming from the functional equation)
matches the notion of depth (coming from the filtration (1 + pn)n).

It is natural to wonder about similar interpretation of the conductor for r = 2. The
answer is positive for r = 2 due to the work of Casselman, see Julien’s talk. It also
holds for r > 2 by Jacquet, Piatetski-Shapiro and Shalika’s result we are exploring here.
Introduce the congruence subgroups

K0(m) :=

(
Kr−1 (O×)r−1

(pm)r−1 1 + pm

)
(5)

where (O×)r−1 denotes the set of columns with r− 1 entries in O×, and (pm)r−1 denotes
the set of lines with (r − 1) entries in pm.

Theorem (Jacquet, Piatetski-Shapiro and Shalika). We have the following properties:

• m > 0
• there is n 6= 0 such that πK0(n) 6= 0; denote by nπ the minimal such n
• dimπK0(nπ) = 1; denote by W a nonzero fixed vector
• for all i > 0, dimπK0(nπ+i) = i+ 1 (this is a result due to Reeder)
• ψ(s,W ) = L(s, π) (in a loose sense, see below for a precise statement)

Remark. In fact, JPSS main theorem is the existence and uniqueness of a W satisfying
the last equality, and that is Kr−1 × 1-right-invariant, see below. The other properties,
in particular the invariance by the congruence subgroups K0(n) and multiplicity one, are
consequences of this definition.
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2. Whittaker functions

2.1. Setting. A fundamental question will be to understand the zeta integrals ψ(s,W,W ′),
and their properties will be obtained as easy consequences of the properties of Whittaker
functions W ∈ W(π) that we study in this section.

Recall the Iwasawa decomposition G = NAK where A is the diagonal subgroup, N
the upper unipotent subgroup, and K = GLr(O) the maximal compact open subgroup.
For a given (nontrivial) additive character ψ of F , define the character θ of N by

θ(n) =
r−1∏
i=1

ψ(ni,i+1). (6)

2.2. Whittaker model. Recall that π is said to be generic if Vπ ' W a space of left-θ-
invariant functions, i.e. such that

W(ng) = θ(n)W (g) (7)

for all n ∈ N , g ∈ G and W ∈ W. In other words, π is generic if HomN (π|N , θ) 6= 0, or

again (by Frobenius reciprocity) of HomG(π, IndGN (θ)).

For a generic π, the space W is unique up to isomorphism, it does not depend on ψ,
is denoted W(π) and called the Whittaker model of π. If π is generic, then so is its
contragredient π̃, and the Whittaker functions of π are described by W (wtg−1) where
W ∈ W(π).

2.3. Support. The Whittaker functions have pretty explicit properties and strong in-
variances that will ultimately be critical for the proof of JPSS result. We make these
properties explicit here, providing detailed proofs or references.

By definition, Whittaker functions are defined by the relation

W (ng) = θ(n)W (g) (8)

and by smoothness, i.e. existence of a neighborhood of the identity fixing W on the right.
Since this neighborhood can be taken to be a compact open subgroup with finite index
in K, we are reduced (up to a finite sum) to understand the properties of W on A.

Proposition (Support). There is a constant C > 0 such that, if W (g) 6= 0 with the
Iwasawa decomposition g = nak, then ∣∣∣∣ aiai+1

∣∣∣∣ 6 C (9)

for all i 6 r − 1.

Proof. Indeed, compute

W (an) = W (ana−1a) = θ(ana−1)W (a) = W (a)
r−1∏
i=1

ψ

(
ai
ai+1

ni,i+1

)
. (10)

For small enough entries in n, it is close enough to the identity matrix so that, by smooth-
ness of W , we have W (an) = W (a). This implies that the product of characters on the
right is trivial, hence that each aia

−1
i+1ni,i+1 is in the conductor O of ψ. Depending on the

“level of smoothness”, i.e. on the ni,i+1 we can chose so that W (an) = W (a), we obtain
the desired result. �
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2.4. Unramified principal series. Introduce a pretty elementary kind of induced rep-
resentations on Gr−1: the spherical (or: unramified) principal series. We will repeatedly
use the Whittaker functions attached to it in the Rankin-Selberg zeta integrals we are
considering. Let (x1, . . . , xr) ∈ Cr be such that xi 6= 0 (and maybe some extra prop-
erties), and consider the induced representation I(x1, . . . , xr) from the character of the
Borel defined by 

a1 ? ? ?
a2 ? ?

. . . ?
ar

 7−→ x
v(a1)
1 x

v(a2)
2 · · ·xv(ar)r . (11)

Defining the unramified character χi by χi($) = xi, the above character is χ1 ⊗ · · · ⊗χr.
The induced I(x1, . . . , xr) is a spherical representation, i.e. contains a “unique” K-fixed
vector, which we denote by f and assume it is normalized so that f(I) = 1.

Denote by H = H(G//K) the Hecke algebra of compactly supported functions on G
that are bi-K-invariant. For φ ∈ H, the average∫

G/K
f(gh)φ(h)dh (12)

is also K-invariant, and belongs to I(x1, . . . , xr). Hence there is a scalar λ(φ) such that∫
G/K

f(gh)φ(h)dh = λ(φ)f. (13)

It is morevoer straightforward that λ : H → C is a homomorphism of the Hecke algebra,
that depends on x = (x1, . . . , xr) and may be denoted λx.

2.5. The Whittaker function associated to x. To each homomorphism λx : H → C,
there is a unique “formal Whittaker function” on G such that

• W (1) = 1
• W (ng) = θ(n)W (g) for all n ∈ N
•
∫
G φ(h)W (gh)dh = λx(φ)W (g)

This is a property stated in Shintani, however it is not proved there. We denote by
Wx(g) or W (g, xi) the corresponding function.

Introduce the application
f̌(g) = f

(
wtg−1w−1

)
. (14)

Proposition (Inverse-transpose). We have

λx(φ̌) = λx−1(φ). (15)

Proof. To obtain the value of λ(φ̌), note that the character χ1 ⊗ · · · ⊗ χr acts by

w

ta1 ? ?
. . . ?

ar


−1

w−1 =

a
−1
1 ? ?

. . . ?
a−1r

 7−→ (x−11 )v(a1)(x−12 )v(a2) · · · (x−1r )v(ar).

This in particular implies that f̌x = fx(wt ·−1 w−1) ∈ I(x−1). Hence, changing variables

and using the fact that f̌x(I) = fx(I) = 1,

λx(φ̌) =

∫
G
φ̌fx =

∫
G
φf̌x = λx−1(φ) (16)

and we obtain the desired result. �
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Proposition (Homogeneity). We have, for all g ∈ G,

λq−sx(φ)fq−sx(g) = λx(φ)|g|sfx(g). (17)

Multiplying by q−s each entry of x, in the induced model, makes a q−s(v(a1)+···+v(ar)

pop out, and this is exactly |g|s, for g in the upper triangular Borel. In other words,
appealing to Iwasawa decomposition, fq−sx(g) = |g|sfx(g), so that

λq−sx(φ)fq−sx(g) =

∫
G
φ(h)fq−sx(gh)dh =

∫
G
φ(h)|gh|sfx(gh) = λx(φ)|g|sfx(g), (18)

as claimed. �

Proposition (Central action). We have, for all u ∈ Z and g ∈ G,

λx(φu) = (x1 · · ·xr)uλx(φ) (19)

where φu(h) = φ($−ug).

Proof. In the induced model, we clearly have

fx (diag($u, . . . , $u)g) = (x1 · · ·xr)ufx(g). (20)

Hence, we can write, changing variables,∫
G
fx(gh)φu(h)dh =

∫
G
fx(ωugh)φ(h)dh = (x1 · · ·xr)u

∫
G
fx(gh)φ(h)dh

= (x1 · · ·xr)uλx(φ)fx(g),

as claimed. �

2.6. Three properties. The above Whittaker functions Wx(g) have three “invariance”
properties that will be critical. We state them in this section and provide complete proofs.

Proposition (Inverse-transpose). Let w be the longest Weyl element of G. We have

Wx(wtg−1, ψ) = Wx−1(g, ψ̄) (21)

where x denotes the tuple (x−11 , . . . , x−1n ).

Proof. By uniqueness, we only need to check that the above function on the left of (21)
satisfies the defining properties of the Whittaker function on the right. First, by K-
invariant and since w ∈ K, it is straightforward that W (wtI−1) = W (w) = 1. Second,
using the left-action by N ,

Wx(wt(ng)−1) = Wx(wtn−1tg−1) = θ(wtn−1w−1)Wx(wtg−1). (22)

Moreover, θ(wtn−1w−1) = θ̄(n), justifying that we added back ψ in the notation for the
statement above, and this proves the first defining property of W (·, ψ̄). We remove ψ
from here on.

For the third property, we have by change of variables∫
G
Wx(wt(gh)−1)φ(h)dh =

∫
G
Wx(wtg−1h)φ(th−1)dh =

∫
G
Wx(wtg−1h)φ̌(h)dh, (23)

where φ̌(g) = φ(wtg−1w−1), where the long Weyl elements have been added using the
bi-K-invariance of φ. Using the defining property of W , we obtain∫

G
Wx(wtg−1h)φ̌(h)dh = λx(φ̌)Wx(wtg−1). (24)

Using the property proved in the previous section, we have that λx(φ̌) = λx−1(φ),
finishing the proof. �
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Proposition (Homogeneity). We have

Wq−sx(g) = |g|sWx(g). (25)

Proof. We use a similar argument, appealing to the uniqueness of Wx. It is clear by
definition that the function |g|−sWq−sx(g) takes value 1 at g = I. The second property,
i.e. the left-action by N , is unharmed by the extra factors since |n| = 1 for all n ∈ N .

For the third property, we use the proposition of the previous section to write∫
G
Wq−sx(gh)φ(h)dh = λq−sx(φ)Wq−sx(g) = λx(φ)|g|sWx(g) =

∫
G
|gh|sWx(gh)φ(h)dh

so that both functions Wq−sx(g) and |g|sWx(g) are equal. �

Proposition (Central action). We have

Wx (diag($u, . . . , $u)g) = (x1 · · ·xr)uWx(g). (26)

Proof. Since the element is central, it does not change the left-action of N by θ. Use the
analogous property for λx to write

λx(φ)Wx(diag($u, . . . , $u)g) =

∫
G
Wx(diag($u, . . . , $u)gh)φ(h)dh

=

∫
G
Wx(gh)φu(h)dh

= (x1 · · ·xr)uλx(φ)Wx(g)

so that we obtain the desired statement. �

2.7. Translating into polynomials. An important fact is that, through the Satake
isomorphism, many things here can be naturally seen as polynomials in the parameters xi.

Shintani proves an explicit formula for W that makes it a polynomial in the “variables”
(and this is generalized by Miyauchi for unramified, and Matringe with another method,
and boils down to the Casselman-Shalika formula).

This setting ought to be clarified.
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