
LECTURE 2 — BERNSTEIN–ZELEVINSKY CLASSIFICATION

TALK BY MLADEN DIMITROV

Abstract. This talk will recall and present some essential results on supercuspidal
representations, and will culminate with the classification of irreducible representations
of GLn.

The aim of the talk is threefold:

• introduce supercuspidal representations
• prove that irreducible representations are admissible
• give a recipe producing all the irreducible representations: they are cooked up from

supercuspidals (this is the content of the Bernstein–Zelevinsky classification)

1. Sueprcuspidal representations

Let F be a local non-Archimedean field, i.e. a finite extension of Qp or of Fp((t)).
Let G = GLn(F ), and (π, V ) ∈ Rep(G) a smooth representation of G. Recall that the
contragredient (π∨, V ∨) is the set of smooth linear functionals (and not only the dual, i.e.
the linear functionals). We will denote generically v ∈ V and v∨ ∈ V ∨.

Definition (Cuspidal). The representation π is called cuspidal if for all proper parabolic
P = MU of G, the Jacquet functor is πU := JP (π) = {0}. This is equivalent to

@P ( G,@τ ∈ Rep(M), π ↪→ IndG
P (τ), (1)

i.e. a cuspidal representation is a representation that cannot be realized as a subrepre-
sentation of an induced.

Proof. The equivalence between the defintion and the characterization (1) is a conse-
quence of the fact that induction and Jacquet functor are adjoint functors, i.e. Frobenius
reciprocity:

HomG(π, IndG
P (τ)) = HomP (π, τ) = HomM (πU , τ) (2)

so that the definition of cuspidal (which means that the term on the right is zero) is
equivalent to (1) (which states that the left term is zero). �

Definition (Supercuspidal). An irreducible representation π is called supercuspidal if
does not occur as a sub-quotient in IndG

P (τ) for P proper parabolic of G and τ ∈ Rep(M).

Remark. It is a non-trivial fact, consequence of the Bernstein–Zelevinsky classification,
that irreducible cuspidal representation are supercuspidal (at least in characteristic 0).
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Definition (Compact modulo center). We say that π is compact (resp. compact modulo
center) if for all v ∈ V and all open compact subgroup K of G,

Dv,K(g) := π(1Kg
−1) · v := vol(K)−1

∫
K
π(kg−1)vdk

has compact (resp. modulo center) support.

Remark. Note that this is a projection operator on K-fixed vectors.

Definition (Matrix coefficient). Given v ∈ V and v∨ ∈ V ∨, define the associated matrix
coefficient

mv,v∨(g) = 〈π∨(g)v∨, v〉 = 〈v∨, π(g−1)v〉 := (π∨(g)v∨)(v) ∈ C, (3)

where 〈·, ·〉 is the duality bracket.

By smoothness of v, v∨, the matrix coefficient factorize by some open compact sub-
groups K ′ and K of G as follows:

C C

K ′\G/K

mv,v∨

Recall the Cartan decomposition, with K◦ = GL2(O):

G =
⊔

a1>···>an

K◦


$a1

$a2

. . .

$an

K◦ (4)

Hence the double cosets appearing in the above diagram are parametrized by

K ′\G/K '
{
k′iγ

akj : a ∈ Z>, i ∈ I, j ∈ J
}

(5)

where I and J are finite sets, and Z> stand for the set of integers tuples satisfying the
condition appearing in the above union. We don’t really care about this ordering ordering
since we can swap the elements in the diagonal matrix by the action of the Weyl group,
which is in K◦. Typically, for n = 2,

GL2(Zp)

(
1

p

)
GL2(Zp) = GL2(Zp)

(
p

1

)
GL2(Zp) (6)

since the Weyl element w =

(
1

1

)
is in GL2(Zp).

Lemma (Characterization by coefficients). A representation π has compact support (mod
center) if and only if the matrix coefficients mv,v∨ have compact support (mod center).

Proof. (=⇒) By smoothness there exists K ⊂ G such that v∨ ∈ (V ∨)K . Hence in
particular v∨ = π∨(1K)v∨ so that mv,v∨(g) = 〈v∨, Dv,K(g)〉.

(⇐=) is slightly harder. The aim is to find (v∨i )i a finite family of vectors so that
supp(Dv,K) ⊂

⋃
i supp(mv∨i ,v), in particular supp(Dv,K) will be compact since each

supp(mv∨i ,v) is by assumption. It suffices to show that Im(Dv,K) is contained in a vector

space of finite dimension. By contradiction, assume there is (gi)i∈N an infinite family of
elements of K ′\G/K such that the Dv,K(gi) are linearly independent.
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By (5), the sequence (gi)i does not belong to any compact, because $a and its powers
belong to a open compact only if a = 0. We just need to construct a coefficient which is
non-zero on these g′is. Define a linear form v∨ ∈ (V ∨)K such that 〈π∨, Dv,K(gi)〉 = 1 =
mv,v∨(gi) (which is possible since the Dv,K(gi) are linearly independent) and extend it by
zero elsewhere on V . Then the matrix coefficient mv,v∨ does not have compact support,
since it contains

⋃
iDv,K(gi). This gives a contradiction. �

Corollary. If π is compact, then Im(Dv,K) is contained in a finite dimensional vector
space.

Proof. This is a consequence of the previous proof. �

Recall that π is finitely generated means that V is generated by the translates π(g)vi
for g ∈ G and finitely many vi ∈ V . Irreducibles are in particular generated by any
non-zero element. Recall that admissible means that for each open compact subgroup K,
we have that V K is finite dimensional.

Proposition. π finitely generated and compact, then it is admissible.

Proof. Assume V = 〈π(g−1)vi〉g∈G,i is finitely generated. Since π(1K) projects onto V K ,
we have

V K = π(1K)V = 〈π(1Kg
−1)vi〉g∈G,i = 〈Dvi,K(g)〉g∈G,i

which is included in a finite sum of finite dimensional spaces by the above corollary. �

Theorem (Harish-Chandra). Let G◦ = {g ∈ G : det(g) ∈ O×}. A representation of G◦

is compact if and only if it is cuspidal.

Remark. G◦ contains all standard unipotents, so cuspidal also makes sense on G◦. More
generally, π ∈ Rep(G) is compact modulo the center if and only if it is cuspidal.

Proof. Let’s admit it: this is mostly based on the Cartan decomposition. �

Corollary. Any irreducible cuspidal π ∈ Irr(G) is admissible.

Proof. As V is irreducible, thus finitely generated, and the index [G : ZG◦] is finite,
it follows that V is finitely generated as ZG◦-representation as well. But Z acts on V
scalarly (by the central character), hence π|G◦ is finitely generated.

By the Harish-Chandra theorem, since π is cuspidal then it is compact. By the propo-
sition, since π|G◦ is compact and finitely generated, thus it is admissible. �

Theorem. Any irreducible π ∈ Irr(G) is admissible.

Proof. Take a minimal parabolic P = MU such that πU 6= 0. By the equivalent in the
definition of cuspidal), i.e. that π ↪→ IndG

P (τ), there exists τ ∈ Irr(M) which is a quotient
of πU . Note that here P may be equal to the whole G, and it precisely happens in the
supercuspidal case. It is now enough to show that this induced IndG

P (τ) is admissible (as
a subrepresentation of an admissible is clearly also admissible).

However, by Iwasawa decomposition, induction preserves admissibility (since they pre-
serve the K-invariants). It is therefore enough to show that τ ∈ Rep(M) is admissible.
But by the corollary, since τ is irreducible, it is enough to show that τ is cuspidal.

If τ was not cuspidal, there would exist a smaller standard parabolic P = M ′U ′ ( P
such that τU ′∩M 6= 0. Note that U ′ = U · (U ′∩M). By transitivity of the Jacquet functor:

πU ′ = (πU )U ′∩M � τU ′∩M 6= 0,

which would contradict the minimality of P = MU with respect to π. �
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2. Bernstein-zelevinsky classification

After having noticed the interest of compactly supported matrix coefficients, we are
led to relax a bit this property. Bernstein-Zelevinsky did most of the job, and Lang-
lands extracted and packaged them in a nice way needed for the theory of automorphic
representations.

Recall that the central character ω of π is defined by the character such that, for all cen-
tral elements z ∈ Z, for all v ∈ V , we have π(z)v = ω(z)v (for irreducible representations,
it exists by Schur’s lemma).

Definition (Essentially square integrable and discrete series). A representation having
a central character ω is essentially square integrable if there is a character χ : F× → R×+
such that ∫

Z\G
|mv,v∨(g)|2χ(det(g))dg <∞. (7)

Moreover, if χ can be taken to be the trivial character 1, i.e. if∫
Z\G
|mv,v∨(g)|2dg <∞, (8)

then we call π square integrable, or say it is a discrete series.

The space of square integrable representations (with character ω) is denoted L2(Z\G,ω).

Remark. In fact, χ is unique and the only χ that can work is χ−1 = |ω|2 by the above
formula (this is the only way for the integrand to be Z-invariant). In the square integrable
case, the central character has to be unitary.

Proposition. An irreducible representation π is essentially square integrable if and only
if there exists one non-zero coefficient which is L2.

Proof. see e.g. Knightly-Li. �

Definition (Segments). A segment is ∆ = (σ, σ(1), . . . , σ(b− 1)) where σ is a supercus-
pidal representation of GLa(F ) and b ∈ N?.

We say that the segments ∆ and ∆′ are linked if neither ∆ or ∆ contains the other,
and if ∆ ∪∆′ is a segment, in particular a = a′. In other words, one precedes the other
and they overlap nontrivially.

We say that a segment ∆ precedes ∆′ if they are liked and there is r > 1 so that
σ′ = σ(r).

Theorem (Bernstein-Zelevinsky). Let P = P (n1, . . . , nk) = MU a parabolic subgroup
of G associated with the partition n = n1 + · · ·+nk. Consider σ = σ1⊗ · · · ⊗ σk where σi
is a supercuspidal representation of GLni(F ).

(1) The induction IndG
P (σ) is reducible if and only if there is i 6= j such that σi = σj(1)

where we define σ(k) := σ ⊗ | det |kF , for all k ∈ Z.

(2) The induction of a segment IndG
P (∆) is reducible and has a unique irreducible

quotient denoted Q(∆), and this Q(∆) is essentially square integrable. Moreover,
every essentially square integrable representation is obtained this way, for a unique
triple (a, b, σ).

(3) Consider segments ∆i so that ∆i does not precede ∆j for i < j. Then the induced

representation IndG
P (Q(∆1)⊗· · ·⊗Q(∆k)) has a unique irreducible quotient, called

the Langlands quotient and denoted Q(∆1, . . . ,∆k). Any irreducible representa-
tion π of G is obtained uiniquely in this way (up to permutation of the ∆i).
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(4) The Langlands quotient Q(∆1, . . . ,∆k) is generic if and only if the induction is
irreducible, i.e. it is not the proper quotient, i.e. it is a full induction. This is
equivalent to “no two ∆i are linked”.

Example. For instance, with n = 2, we have

1 −→ IndG
B

(
| · |−1/2

| · |1/2

)
−→ St. (9)

Remark. IndG
P is the IGP of Julien’s talk (i.e. the normalized induction).

More generally, the Steinberg Stn for GLn is the representation corresponding to a = 1,

σ = | · |
1−n
2 (i.e. starting in the middle, so that the segment is unitary) and b = n.

Also, if b = 1, then Q(∆) = σ and these are discrete series.
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