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Abstract LetG be the unramified unitary group in three variables defined over a p-adic field
with p �= 2. In this paper, we establish a theory of newforms for the Rankin–Selberg integral
for G introduced by Gelbart and Piatetski-Shapiro. We describe L and ε-factors defined
through zeta integrals in terms of newforms. We show that zeta integrals of newforms for
generic representations attain L-factors. As a corollary, we get an explicit formula for ε-
factors of generic representations.
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1 Introduction

This paper is the sequel to the author’s works [10–12] on newforms for unramified U(2, 1).
First of all, we review the theory of newforms for GL(2) by Casselman and Deligne. Let F be
a non-archimedean local field of characteristic zero with ring of integers oF and its maximal
ideal pF . For each non-negative integer n, we define an open compact subgroup Γ0(p

n
F ) of

GL2(F) by

Γ0(p
n
F ) =

(
oF oF
pnF 1 + pnF

)×
.

For an irreducible generic representation (π, V ) of GL2(F), we denote by V (n) the Γ0(p
n
F )-

fixed subspace of V , that is,

V (n) = {v ∈ V | π(k)v = v, k ∈ Γ0(p
n
F )}.
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Let U denote the unipotent radical of the upper-triangular Borel subgroup of GL2(F). We
regard a non-trivial additive character ψF of F with conductor oF as a character of U in the
usual way, and denote by W(π,ψF ) the Whittaker model of π with respected to ψF . Then
the following theorem holds:

Theorem 1.1 [3] Let (π, V ) be an irreducible generic representation of GL2(F).

(i) There exists a non-negative integer n such that V (n) �= {0}.
(ii) Put c(π) = min{n ≥ 0 | V (n) �= {0}}. Then the space V (c(π)) is one-dimensional.
(iii) For any n ≥ c(π), we have dim V (n) = n − c(π) + 1.
(iv) If v is a non-zero element in V (c(π)), then the corresponding Whittaker function Wv

in W(π,ψF ) satisfies Wv(e) �= 0, where e denotes the identity element in GL2(F).

We call the integer c(π) the conductor of π and V (c(π)) the space of newforms for π .
Newforms and conductors relate to L and ε-factors as follows:

Theorem 1.2 [3,5] Let π be an irreducible generic representation of GL2(F).

(i) Suppose that W is the newform in the Whittaker model of π . Then the corresponding
Jacquet–Langlands’s zeta integral Z(s,W ) attains the L-factor of π .

(ii) The ε-factor ε(s, π, ψF ) of π is a constant multiple of q−c(π)s
F , where qF stands for the

cardinality of the residue field of F.

Similar results were obtained by Jacquet et al. [8] and Reeder [14] for GL(n). Recently,
Roberts and Schmidt [15] established a theory of newforms for the irreducible representations
of GSp(4) with trivial central characters. Our main concern is to establish a newform theory
for unramified U(2, 1).

We review results in [10–12] comparing Theorems 1.1 and 1.2. Let U(2, 1) denote the
unitary group in three variables associated to the unramified quadratic extension E/F . We
assume that the residual characteristic of F is odd. In [12], the author introduced a family of
open compact subgroups of U(2, 1), and defined the notion of conductors and newforms for
generic representations. He proved an analog of Theorem 1.1 (i) and (ii) for all the generic
representations, and that of (iii) and (iv) for the generic supercuspidal representations. For
U(2, 1), we consider L and ε-factors defined through the Rankin–Selberg integral introduced
by Gelbart and Piatetski-Shapiro [7] and Baruch [1]. In [11], the author showed a theorem
analogous to Theorem 1.2 (ii) assuming Conjecture 4.1 in [11] on L-factors, which is an
analog of Theorem 1.2 (i). In loc. cit., he also proved that his conjecture holds for the
generic supercuspidal representations. To show the validity of his conjecture for the generic
representations, he determined conductors of the generic non-supercuspidal representations,
and gave an explicit realization of those newforms in [10]. In loc. cit., he also proved an
analog of Theorem 1.1 (iii) and (iv) for the generic non-supercuspidal representations. Now
we are ready to show that Conjecture 4.1 in [11] holds for all the generic representations of
U(2, 1), that is, zeta integrals of newforms attain L-factors.

We explain our method. Unlike the cases of GL(n) and GSp(4), Gelbart and Piatetski-
Shapiro’s zeta integral involves a section which has the form f (s, h, Φ), where h is an
element in U(1, 1) and Φ is a Schwartz function on F2. Thus, the usual investigation on
Whittaker functions is not enough to determine the L-factor, which is defined as the greatest
common divisor of zeta integrals, and we can not use any explicit formula of L-factors for
U(2, 1). However it is easy to determine the L-factors for U(2, 1) up to amultiple of LE (s, 1)
(Proposition 4.2).Here LE (s, 1) stands for theHecke-Tate factor of the trivial representation1
of E×, and the section f (s, h, Φ) yields LE (s, 1).Wewill compare zeta integral of newforms
with our rough estimation of L-factors, and show that the difference is at most LE (s, 1)
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(Lemma 3.5). Hence we can use the same trick in [11]. If the difference is LE (s, 1), then
it contradicts the fact that the ε-factor is monomial (see the proof of Theorem 3.6). So we
conclude that zeta integrals of newforms attain L-factors.

The main body of this article is the proof of Lemma 3.5. For representations of conductor
zero, we can use Casselman–Shalika’s formula for the spherical Whittaker functions in [4].
To compute zeta integrals of newforms in positive conductor case, we follow the method by
Roberts and Schmidt for GSp(4) in [15]. They utilized Hecke operators acting on the space
of newforms, and obtained a formula for zeta integrals in terms of Hecke eigenvalues. There
are two problems to apply their method to U(2, 1). Firstly, they assumed that representations
of GSp(4) have trivial central characters. This assumption is essential in their computation
of Hecke operators. Secondly, for an irreducible generic representation π of U(2, 1) whose
conductor is positive, it will turns out that the degree of the L-factor of π is at most 4 with
respect to q−s

F (see Proposition 7.1 for example). Therefore we need two Hecke eigenvalues
to describe zeta integrals of newforms. But, in the usual way, we have only one good Hecke
operator which is represented by the element diag(�, 1,�−1), where � is a uniformizer of
F . We explain how to overcome these two problems. Let V denote the space of π , V (n) its
subspace consisting of the vectors fixed by the level n subgroup, and Nπ the conductor of π .
We consider the following two operators:

(1) The Hecke operator T on V (Nπ + 1) which is represented by the element diag
(�, 1,�−1);

(2) The composite map of the level raising operator θ ′ : V (Nπ ) → V (Nπ + 1) and the
level lowering one δ : V (Nπ + 1) → V (Nπ ).

In [10], we have seen that both V (Nπ ) and V (Nπ + 1) are one-dimensional, and hence the
operators T and δ ◦ θ ′ have eigenvalues ν and λ. Since the central character of π is trivial
on the level Nπ subgroup, we can apply the method by Roberts and Schmidt to compute the
Hecke operator T on V (Nπ + 1), and get a formula of zeta integrals of newforms in terms
of ν and λ (Theorem 5.10).

We summarize the contents of this paper. In Sect. 2, we fix the notation for representa-
tions of unramified U(2, 1), and recall the theory of Rankin–Selberg integrals introduced
by Gelbart, Piatetski-Shapiro and Baruch. In Sect. 3, we recall the notion of newforms for
U(2, 1), and prove our main Theorem 3.6 assuming Lemma 3.5. In Sect. 4, we roughly esti-
mate L-factors according to the classification of the irreducible representations of U(2, 1).
In Sect. 5, we give a formula for zeta integrals of newforms in terms of two eigenvalues ν

and λ. The proof of Lemma 3.5 is finished in Sect. 6. In Sect. 7, we give an example of an
explicit computation of L-factors, for some non-supercuspidal representations. In Sect. 8,
we determine L-factors of the depth zero supercuspidal representations.

A further direction of this research is to compare L and ε-factors defined by Gelbart and
Piatetski-Shapiro’s integral with those of L-parameters. It is also an interesting problem to
generalize our result to other p-adic groups, for example, ramifiedU(2, 1) and unitary groups
in odd variables.

2 Gelbart and Piatetski-Shapiro’s integral

In Sect. 2.1, we fix our notation for the unramified group U(2, 1) that we use throughout
this paper. In Sect. 2.2, we recall from [1] the theory of zeta integrals for U(2, 1) which is
introduced by Gelbart and Piatetski-Shapiro in [7]. We also recall the definition of L and
ε-factors attached to generic representations of U(2, 1) in Sects. 2.3 and 2.4 respectively.
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2.1 Notations

Let F be a non-archimedean local field of characteristic zero, oF its ring of integers, pF the
maximal ideal in oF , and� = �F a uniformizer of F . We denote by | · |F the absolute value
of F normalized so that |�F |F = q−1, where q = qF is the cardinality of the residue field
oF/pF . We use the analogous notation for any non-archimedean local fields. Throughout this
paper, we assume that the residual characteristic of F is different from two.

Let E = F[√ε] be the unramified quadratic extension over F , where ε is a non-square
element in o×

F . Then � = �F is a common uniformizer of E and F . Because the cardinality
of the residue field of E is equal to q2, we denote by | · |E the absolute value of E normalized
so that |� |E = q−2. We realize the unramified unitary group in three variables defined over
F as G = {g ∈ GL3(E) | t g Jg = J }, where − is the non-trivial element in Gal(E/F) and

J =
⎛
⎝ 0 0 1
0 1 0
1 0 0

⎞
⎠ .

We denote by e the identity element of G.
Let B be the Borel subgroup of G consisting of the upper triangular elements in G, T

its diagonal subgroup, and U the unipotent radical of B. We write Û for the opposite of U .
Then we have

U =
⎧⎨
⎩u(x, y) =

⎛
⎝ 1 x y

√
ε − xx/2

0 1 −x
0 0 1

⎞
⎠

∣∣∣∣ x ∈ E, y ∈ F

⎫⎬
⎭

=
⎧⎨
⎩u(x, y) =

⎛
⎝ 1 x y
0 1 −x
0 0 1

⎞
⎠

∣∣∣∣ x, y ∈ E, y + y + xx = 0

⎫⎬
⎭

and

Û = {
û(x, y) = tu(x, y)| x ∈ E, y ∈ F

}
= {

û(x, y) = tu(x, y)| x, y ∈ E, y + y + xx = 0
}
,

where t denotes the transposition of matrices. In most part of this paper, we write u(x, y) for
elements in U . The notion u(x, y) will appear only in the proofs of Lemmas 6.10 and 7.3.
We identify the subgroup

H =
⎧⎨
⎩

⎛
⎝ a 0 b
0 1 0
c 0 d

⎞
⎠ ∈ G

⎫⎬
⎭

of G with U(1, 1). We set BH = B ∩ H , UH = U ∩ H and TH = T ∩ H . Then BH is the
upper triangular Borel subgroup of H with Levi decomposition BH = THUH . There exists
an isomorphism between E× and TH which is given by

t : E× 
 TH ; a �→ t (a) =
⎛
⎝ a 0 0
0 1 0
0 0 a−1

⎞
⎠ .

A non-trivial additive character ψE of E defines the following character of U , which is
also denoted by ψE :

ψE (u(x, y)) = ψE (x), for u(x, y) ∈ U.
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We say that a smooth representation π of G is generic if HomU (π,ψE ) �= {0}. Let (π, V ) be
an irreducible generic representation of G. Then there exists a unique embedding of π into
IndGUψE up to scalars. The image W(π,ψE ) of π in IndGUψE is called the Whittaker model
of π . For an element v in V , we denote byWv the function inW(π,ψE ) corresponding to v.

We identify the center Z of G with the norm-one subgroup E1 of E×, and define open
compact subgroups of Z by

Z0 = Z , Zn = Z ∩ (1 + pnE ), for n ≥ 1.

For an irreducible admissible representationπ ofG, we define the conductor nπ of the central
character ωπ of π by

nπ = min{n ≥ 0 | ωπ |Zn = 1}.
2.2 Zeta integrals

Let C∞
c (F2) denote the space of locally constant, compactly supported functions on F2. For

Φ ∈ C∞
c (F2) and h ∈ H , we define a function f (s, h, Φ) on C as in [11, section 3.1]. Let

π be an irreducible generic representation of G. For W ∈ W(π,ψE ) and Φ ∈ C∞
c (F2), we

define the zeta integral Z(s,W, Φ) by

Z(s,W, Φ) =
∫
UH \H

W (h) f (s, h, Φ)dh,

where dh is the Haar measure on UH\H normalized so that the volume of UH\UH (H ∩
GL2(oF )) is one. By [1, Proposition 3.4], Z(s,W, Φ) absolutely converges to a function in
C(q−2s) when Re(s) is sufficiently large.

Remark 2.1 Originally, Gelbart and Piatetski-Shapiro introduces a family of zeta integral
of the form Z(s,W, Φ, χ), where χ is a quasi-character of E× (see [1]). In this paper, we
consider the case when χ is a trivial character of E×.

2.3 L-factors

The L-factor of an irreducible generic representation π of G is defined as follows. Let Iπ be
the subspace of C(q−2s) spanned by Z(s,W, Φ) where Φ ∈ C∞

c (F2), W ∈ W(π,ψE ) and
ψE runs over all of the non-trivial additive characters of E . By [1, p. 331], Iπ is a fractional
ideal of C[q−2s, q2s] which contains C. Thus, there exists a polynomial P(X) in C[X ] such
that P(0) = 1 and 1/P(q−2s) generates Iπ as C[q−2s, q2s]-module. We define the L-factor
L(s, π) of π by

L(s, π) = 1

P(q−2s)
.

2.4 ε-Factors

Let ψF be a non-trivial additive character of F with conductor pc(ψF )
F . We normalize the

Haar measure on F2 so that the volume of oF ⊕ oF equals to qc(ψF ). For each Φ ∈ C∞
c (F2),

let Φ̂ denote the Fourier transform of Φ defined in [1, section 2]. Then we have ˆ̂
Φ = Φ for

all Φ ∈ C∞
c (F2). Due to [1, Corollary 4.8], there exists a rational function γ (s, π, ψF , ψE )

in q−2s which satisfies

γ (s, π, ψF , ψE )Z(s,W, Φ) = Z(1 − s,W, Φ̂).
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We define the ε-factor ε(s, π, ψF , ψE ) of π by

ε(s, π, ψF , ψE ) = γ (s, π, ψF , ψE )
L(s, π)

L(1 − s, π̃)
,

where π̃ denotes the representation contragradient to π . By [11, Proposition 3.13], we have
L(s, π̃) = L(s, π), and hence

ε(s, π, ψF , ψE ) = γ (s, π, ψF , ψE )
L(s, π)

L(1 − s, π)
. (2.2)

For ε-factors, the following holds:

Proposition 2.3 [11, Proposition 3.15] The ε-factor ε(s, π, ψF , ψE ) is a monomial in q−2s

which has the form

ε(s, π, ψF , ψE ) = ±q−2n(s−1/2),

for some n ∈ Z.

3 Newforms and L-factors

In Sect. 3.1, we recall from [12] the notion of conductors and newforms for generic repre-
sentations π of G. In Sect. 3.2, we prove our two main theorems assuming Lemma 3.5. We
show that a newform for π attains the L-factor of π through Gelbart and Piatetski-Shapiro’s
integral (Theorem 3.6 (i)). Moreover we obtain the coincidence of the conductor of π and
the exponent of q−2s of the ε-factor of π (Theorem 3.6 (ii)). Lemma 3.5 will be proved in
Sect. 6.

3.1 Newforms

For a non-negative integer n, we define an open compact subgroup Kn of G by

Kn =
⎛
⎝ oE oE p−n

E
pnE 1 + pnE oE
pnE pnE oE

⎞
⎠ ∩ G.

For an irreducible generic representation (π, V ) of G, we set

V (n) = {v ∈ V | π(k)v = v, k ∈ Kn}, n ≥ 0.

We say that an element v in V is of level n if v lies in V (n). By [12, Theorem 2.8], there
exists a non-negative integer n such that V (n) is not zero.

Definition 3.1 Let (π, V ) be an irreducible generic representation of G. We call the integer
Nπ = min{n ≥ 0 | V (n) �= {0}} the conductor of π and elements in V (Nπ ) newforms for π .

In [10], we gave an explicit formula for dim V (n), n ≥ Nπ . In particular, the following
holds.

Theorem 3.2 [10, Corollary 5.2] For any irreducible generic representation (π, V ) of G,
we have

dim V (Nπ ) = dim V (Nπ + 1) = 1.
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Remark 3.3 Suppose that (π, V ) is an irreducible generic representation of G. Then ZNπ

acts on V (Nπ ) trivially. This implies Nπ ≥ nπ . The relation between Nπ and nπ is crucial
for the computation of zeta integrals of newforms in [11].

It follows from [12, Theorem5.6] that the space V (Nπ ) is one-dimensional.We shall relate
newforms with Gelbart and Piatetski-Shapiro’s integral. For W ∈ W(π,ψE ), we define the
zeta integral Z(s,W ) of W by

Z(s,W ) =
∫
E×

W (t (a))|a|s−1
E d×a.

Here we normalize the Haar measure d×a on E× so that the volume of o×
E is one. One can

show that the integral Z(s,W ) absolutely converges to a function in C(q−2s) when Re(s) is
enough large, along the lines of the theory of zeta integrals for GL(2) by using [1, Proposition
3.3].

For each integer n, letΦn be the characteristic function of pnF ⊕oF .We denote by LE (s, χ)

the L-factor of a quasi-character χ of E×, that is,

LE (s, χ) =
⎧⎨
⎩

1

1 − χ(�)q−2s , if χ is unramified;
1, if χ is ramified.

Wewrite 1 for the trivial character of E×. One important property of our compact subgroups
{Kn}n≥0 is that Kn ∩ H is a maximal compact subgroup of H for any n ≥ 0. So we obtain
an Iwasawa decomposition H = UHTH (Kn ∩ H). By using this decomposition, we get the
following:

Proposition 3.4 [11, Proposition 3.5] Let n be any non-negative integer. Suppose that a
function W in W(π,ψE ) is fixed by Kn. Then we have

Z(s,W, Φn) = Z(s,W )LE (s, 1).

If the conductor of ψE is oE , then it follows from [10, Proposition 5.1] that any non-zero
element v ∈ V (Nπ ) satisfiesWv(e) �= 0. Due to Theorem 3.2, there exists a unique newform
v for π such that Wv(e) = 1. We state the key lemma which will be proved in Sect. 6.

Lemma 3.5 Suppose that the conductor of ψE is oE . Let v be the element in V (Nπ ) which
satisfies Wv(e) = 1. Then we have

Z(s,Wv,ΦNπ ) = L(s, π) or L(s, π)/LE (s, 1).

In the following theorem,wewill show that the latter (Z(s,Wv,ΦNπ ) = L(s, π)/LE (s, 1))
is never the case, that is, the zeta integral of the newform attains the L-factor.

3.2 The main theorem

We shall prove our main theorem, which is an analog of Theorem 1.1.

Theorem 3.6 We fix an additive character ψE of E with conductor oE . For any irreducible
generic representation π of G, we have the followings:

(i) Let v be the element in V (Nπ ) such that Wv(e) = 1. Then we have

Z(s,Wv,ΦNπ ) = L(s, π).
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(ii) If ψF has conductor oF , then we have

ε(s, π, ψF , ψE ) = q−2Nπ (s−1/2).

Proof ByLemma 3.5, we have Z(s,Wv,ΦNπ ) = L(s, π) or L(s, π)/LE (s, 1). Suppose that
Z(s,Wv,ΦNπ ) = L(s, π)/LE (s, 1). Take an additive character ψF of F whose conductor
is oF . Then, by [11, Proposition 3.9], we get

Z(1 − s,Wv, Φ̂Nπ ) = q−2Nπ (s−1/2)Z(1 − s,Wv,ΦNπ ),

and hence

Z(1 − s,Wv, Φ̂Nπ ) = q−2Nπ (s−1/2)L(1 − s, π)/LE (1 − s, 1)

by assumption. Due to (2.2), we obtain

Z(1 − s,Wv, Φ̂Nπ )

L(1 − s, π)
= ε(s, π, ψF , ψE )

Z(s,Wv,ΦNπ )

L(s, π)
,

so that

q−2Nπ (s−1/2) 1

LE (1 − s, 1)
= ε(s, π, ψF , ψE )

1

LE (s, 1)
.

This implies that ε(s, π, ψF , ψE ) is not a monomial in q−2s , which contradicts Proposi-
tion 2.3. Therefore we conclude that Z(s,Wv,ΦNπ ) = L(s, π). This implies (i). Now the
assertion (ii) follows from [11, Theorem 4.3]. ��

4 An estimation of L-factors

The remaining of this paper is devoted to the proof of Lemma 3.5. In this section, we roughly
estimate the L-factors of generic representations of G. To state our result, we fix the notation
for parabolically induced representations. For a quasi-character μ1 of E× and a character μ2

of E1, we define a quasi-character μ = μ1 ⊗ μ2 of T by

μ

⎛
⎝ a

b
a−1

⎞
⎠ = μ1(a)μ2(b), for a ∈ E× and b ∈ E1.

We regard μ as a quasi-character of B which is trivial on U . Let IndGB (μ) denote the nor-
malized parabolic induction. Then the space of IndGB (μ) is that of locally constant functions
f : G → C which satisfy

f (bg) = δB(b)1/2μ(b) f (g), for b ∈ B, g ∈ G,

where δB is the modulus character of B. Note that

δB

⎛
⎝ a

b
a−1

⎞
⎠ = |a|2E , for a ∈ E× and b ∈ E1.

The group G acts on the space of IndGB (μ) by the right translation.
Let (π, V ) be an irreducible generic representation of G. To study the integral Z(s,W )

of W ∈ W(π,ψE ), we recall from [12, section 4.2] some properties of the restriction of
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Whittaker functions to TH . Let W be a function in W(π,ψE ). Under the identification
TH 
 E×, the restriction W |TH of W to TH is a locally constant function on E×, and there
exists an integer n such that suppW |TH ⊂ pnE . We set V (U ) = 〈π(u)v − v | v ∈ V, u ∈ U 〉.
Then for any element v in V (U ), the function Wv|TH lies in C∞

c (E×).
The next lemma follows along the lines in the theory of zeta integrals for GL(2). However

wegive a proof for the reader’s convenience. In the below,wedenote byμ1 the quasi-character
of E× defined by μ1(a) = μ1(a), a ∈ E×.

Lemma 4.1 Let π be an irreducible generic representation of G and W a function in
W(π,ψE ).

(i) Suppose that π is supercuspidal. Then Z(s,W ) lies in C[q−2s, q2s].
(ii) Suppose that π is a proper submodule of IndGB (μ1 ⊗ μ2), for some μ1 and μ2. Then

Z(s,W ) belongs to LE (s, μ1)C[q−2s, q2s].
(iii) Suppose that π = IndGB (μ1 ⊗ μ2), for some μ1 and μ2. Then the integral Z(s,W ) lies

in LE (s, μ1)LE (s, μ−1
1 )C[q−2s, q2s].

Proof Let VU = V/V (U ) be the normalized Jacquet module of π . The group T acts on VU
by δ

−1/2
B π .

(i) If π is supercuspidal, then we have VU = {0}. Since W is associated to an element in
V = V (U ), the functionW |TH lies in C∞

c (E×), and hence Z(s,W ) belongs toC[q−2s, q2s].
(ii) In this case, VU is isomorphic to μ1 ⊗ μ2 as T -module. Take v ∈ V such that

W = Wv . If v lies in V (U ), then by the proof of (i), C[q−2s, q2s] contains Z(s,W ), so does
LE (s, μ1)C[q−2s, q2s]. Suppose that v does not belong to V (U ). Since VU is isomorphic to
μ1 as TH -module, we see that the element δ

−1/2
B (t (a))π(t (a))v − μ1(a)v lies in V (U ) for

any a ∈ E×. Set v′ = δ
−1/2
B (t (a))π(t (a))v − μ1(a)v. One can observe that Z(s,Wv′) =

(|a|−s
E − μ1(a))Z(s,Wv). So (|a|−s

E − μ1(a))Z(s,Wv) lies in C[q−2s, q2s] for all a ∈ E×.
Suppose that μ1 is ramified. Then we can find a ∈ o×

E such that μ1(a) �= 1. Thus,
we see that (1 − μ1(a))Z(s,Wv) lies in C[q−2s, q2s]. If μ1 is unramified, then we have
(q2s − μ1(�))Z(s,Wv) ∈ C[q−2s, q2s] by putting a = � . These imply that Z(s,Wv) lies
in LE (s, μ1)C[q−2s, q2s], as required.

(iii) In the case when π = IndGB (μ1 ⊗ μ2), there is a T -submodule V1 of VU such that
VU/V1 
 μ1 ⊗μ2 and V1 
 μ−1

1 ⊗μ2. Then we can easily show the assertion by repeating
the argument in the proof of (ii) twice. ��

According to the classification of representations ofG, we obtain the following estimation
of L-factors:

Proposition 4.2 Let π be an irreducible generic representation of G.

(i) Suppose that π is supercuspidal. Then LE (s, 1) divides L(s, π), that is, L(s, π)LE

(s, 1)−1 lies in C[q−2s, q2s].
(ii) Suppose that π is a proper submodule of IndGB (μ1 ⊗ μ2), for some μ1 and μ2. Then

LE (s, μ1)LE (s, 1) divides L(s, π).
(iii) Suppose that π = IndGB (μ1 ⊗ μ2), for some μ1 and μ2. Then L(s, π) is divided by

LE (s, μ1)LE (s, μ−1
1 )LE (s, 1).

Proof Let W and Φ be functions in W(π,ψE ) and C∞
c (F2) respectively. Note that W (h)

and f (s, h, Φ) are right smooth functions on H . So the integral Z(s,W, Φ) can be written as
a linear combination of Z(s,W ′) f (s, e, Φ ′), where W ′ ∈ W(π,ψE ) and Φ ′ ∈ C∞

c (F2). By
the theory of zeta integrals for GL(1), we see that f (s, e, Φ ′) lies in LE (s, 1)C[q−2s, q2s].
So the assertion follows from Lemma 4.1. ��
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5 Zeta integrals of newforms

The proof of Lemma 3.5 will be done by comparing zeta integrals of newforms with Propo-
sition 4.2. To this end, we give a formula for zeta integrals of newforms in this section.
Let (π, V ) be an irreducible generic representation of G. If Nπ is zero, then Gelbart and
Piatetski-Shapiro in [7] computed zeta integrals of newforms by using Casselman–Shalika’s
formula for the spherical Whittaker functions in [4]. So we treat only representations with
Nπ > 0 here. In this case, we will follow the method by Roberts and Schmidt for GSp(4).
In [15, section 7.4], they give a formula for zeta integrals of newforms for representations
of PGSp(4) with Nπ ≥ 2, in two Hecke eigenvalues. For U(2, 1), we need two eigenvalues
to describe zeta integrals of newforms. But we have only one nice Hecke operator. The key
in our computation is to consider the spaces V (Nπ ) and V (Nπ + 1) simultaneously, which
are both one-dimensional. In Sect. 5.1, we recall the definition of the level raising operator
θ ′ : V (Nπ ) → V (Nπ + 1). The first eigenvalue ν is defined in Sect. 5.2 as that of the Hecke
operator T on V (Nπ + 1). The second one λ is introduced in Sect. 5.3 as the eigenvalue of
the composite map of θ ′ and the level lowering operator δ : V (Nπ + 1) → V (Nπ ). Recall
that we need the condition n > nπ to describe the level lowering operator δ on V (n) (see
[11, Lemma 5.9]). Since we always have Nπ + 1 > nπ by Remark 3.3, we can calculate the
operator δ on V (Nπ +1). In Sect. 5.4, we describe zeta integrals of newforms explicitly with
ν and λ (Theorem 5.10).

5.1 The level raising operator θ ′

From now on, we assume that the conductor of ψE is oE . Let (π, V ) be an irreducible
generic representation of G whose conductor Nπ is positive. We abbreviate N = Nπ . Let θ ′
denote the level raising operator from V (N ) to V (N + 1) defined in [12, section 3]. By [12,
Proposition 3.3], we have

θ ′v = π(ζ−1)v +
∑

x∈p−1−N
F /p−N

F

π(u(0, x))v, v ∈ V (N ), (5.1)

where

ζ =
⎛
⎝�

1
�−1

⎞
⎠ .

We fix a newform v in V (N ), and set

ci = Wv(ζ
i ), di = Wθ ′v(ζ

i ),

for i ∈ Z.

Lemma 5.2 For i ∈ Z, we have di = ci−1 + qci .

Proof By (5.1), we obtain

Wθ ′v(ζ
i ) = Wv(ζ

i−1) +
∑

x∈p−1−N
F /p−N

F

Wv(ζ
i u(0, x)),

for i ∈ Z. Since ζ i u(0, x) = u(0,� 2i x)ζ i and ψE (u(0,� 2i x)) = 1, we obtain
Wv(ζ

i u(0, x)) = Wv(ζ
i ), and hence
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Wθ ′v(ζ
i ) = Wv(ζ

i−1) + qWv(ζ
i ).

This implies the lemma. ��
5.2 The eigenvalue ν

Let T denote the Hecke operator on V (N + 1) defined in [11, subsection 5.1]. For w ∈
V (N + 1), we have

Tw = 1

vol(KN )

∫
KN ζKN

π(g)wdg =
∑

k∈KN /KN∩ζKN ζ−1

π(kζ )w.

By Theorem 3.2, the space V (N + 1) is one-dimensional. So there exists a complex number
ν, which is called the Hecke eigenvalue of T , such that

Tw = νw

for all w ∈ V (N + 1). For w ∈ V (N + 1), we set

w′ =
∑

y∈pN
E /pN+1

E

∑
z∈pN

F /pN+1
F

π(û(y, z))w. (5.3)

For each i ∈ Z, we put

d ′
i = W(θ ′v)′(ζ

i ).

Then we have the following

Lemma 5.4 For i ≥ 0, we have νdi = d ′
i−1 + q4di+1.

Proof By [11, Lemma 5.4], we obtain

νθ ′v = T θ ′v = π(ζ−1)(θ ′v)′ +
∑

a∈oE/pE

b∈p−1−N
F /p1−N

F

π(u(a, b)ζ )θ ′v. (5.5)

Thus, we get

νWθ ′v(ζ
i ) = W(θ ′v)′(ζ

i−1) +
∑

a∈oE/pE

b∈p−1−N
F /p1−N

F

Wθ ′v(ζ
i u(a, b)ζ ),

for i ≥ 0. Note that ζ i u(a, b) = u(� i a,� 2i b)ζ i andψE (u(� i a,� 2i b)) = ψE (� i a) = 1
because a ∈ oE and ψE has conductor oE . Hence we have Wθ ′v(ζ i u(a, b)ζ ) = Wθ ′v(ζ i+1),
and hence

νWθ ′v(ζ
i ) = W(θ ′v)′(ζ

i−1) + q4Wθ ′v(ζ
i+1).

This completes the proof. ��
5.3 The eigenvalue λ

The central character ωπ of π is trivial on ZN = Z ∩ KN . Since the group ZN KN+1 acts on
V (N + 1) trivially, we can define the level lowering operator δ : V (N + 1) → V (N ) by

δw = 1

vol(KN ∩ (ZN KN+1))

∫
KN

π(k)wdk =
∑

k∈KN /KN∩(ZN KN+1)

π(k)w,
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for w ∈ V (N + 1). Theorem 3.2 implies that V (N ) is of dimension one. So there exists a
complex number λ such that

λv = δθ ′v

for all v ∈ V (N ).

Lemma 5.6 We have

d ′
i + q2di+1 = λci , i ≥ 0,

d ′−1 = 0.

Proof Since N is positive and ωπ is trivial on ZN , we have N + 1 ≥ 2 and N + 1 > nπ . So
we can apply [11, Lemma 5.9], and get

λv = δθ ′v = (θ ′v)′ +
∑

y∈p−1
E /oE

π(ζu(y, 0))θ ′v. (5.7)

Hence we obtain

λWv(ζ
i ) = W(θ ′v)′(ζ

i ) +
∑

y∈p−1
E /oE

Wθ ′v(ζ
i+1u(y, 0)),

for i ∈ Z. Because ζ i+1u(y, 0) = u(� i+1y, 0)ζ i+1 and ψE (u(� i+1y, 0)) = ψE (� i+1y),
we have Wθ ′v(ζ i+1u(y, 0)) = ψE (� i+1y)Wθ ′v(ζ i+1) . So we get

λWv(ζ
i ) = W(θ ′v)′(ζ

i ) +
∑

y∈p−1
E /oE

ψE (� i+1y)Wθ ′v(ζ
i+1).

If i ≥ 0, then we have ψE (� i+1y) = 1 because � i+1y ∈ oE and ψE has conductor oE . So
we have

λWv(ζ
i ) = W(θ ′v)′(ζ

i ) + q2Wθ ′v(ζ
i+1).

This implies λci = d ′
i + q2di+1, for i ≥ 0.

If i = −1, then we have
∑

y∈p−1
E /oE

ψE (y) = 0, and hence λWv(ζ
−1) = W(θ ′v)′(ζ−1).

Due to [12, Corollary 4.6], we get Wv(ζ
−1) = 0. So we obtain W(θ ′v)′(ζ−1) = 0. This

implies d ′−1 = 0. ��
5.4 Zeta integrals of newforms in ν and λ

We get the following recursion formula for ci = Wv(ζ
i ), i ≥ 0.

Lemma 5.8 We have

(ν + q2 − λ)ci + q(ν + q2 − q3)ci+1 = q5ci+2, i ≥ 0,

(ν − q3)c0 = q4c1.

Proof The assertion follows from Lemmas 5.2, 5.4 and 5.6. For the second equation, we note
that c−1 = Wv(ζ

−1) is equal to zero because of [12, Corollary 4.6]. ��
By Lemma 5.8, we get the following formula of zeta integrals of newforms.
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Proposition 5.9 Let (π, V ) be an irreducible generic representation of G whose conductor
Nπ is positive. For any v ∈ V (Nπ ), we have

Z(s,Wv) = (1 − q−2s)Wv(e)

1 − (ν + q2 − q3)q−2q−2s − (ν + q2 − λ)q−1q−4s .

Proof For v ∈ V (Nπ ), it follows from [12, Corollary 4.6] that suppWv|TH ⊂ oE . Since
Wv|TH is o×

E -invariant, we obtain

Z(s,Wv) =
∞∑
i=0

Wv(ζ
i )|� i |s−1

E =
∞∑
i=0

ciq
2i(1−s).

Put α = (ν + q2 − q3)q−4 and β = (ν + q2 − λ)q−5. Then by Lemma 5.8, we have

ci+2 = αci+1 + βci , i ≥ 0.

So we obtain

Z(s,Wv) = c0 + c1q
2−2s +

∞∑
i=0

(αci+1 + βci )q
2(i+2)(1−s)

= c0 + c1q
2−2s + βq4−4s

∞∑
i=0

ciq
2i(1−s) + αq2−2s

∞∑
i=0

ciq
2i(1−s) − αc0q

2−2s

= c0 + c1q
2−2s + βq4−4s Z(s,Wv) + αq2−2s Z(s,Wv) − αc0q

2−2s

= c0 + (c1 − αc0)q
2−2s + (αq2−2s + βq4−4s)Z(s,Wv).

Thus we have

Z(s,Wv) = c0 + (c1 − αc0)q2−2s

1 − αq2−2s − βq4−4s

= c0(1 − q−2s)

1 − (ν + q2 − q3)q−2q−2s − (ν + q2 − λ)q−1q−4s .

In the last equality, we use the equation c1−αc0 = −q−2c0 from Lemma 5.8. Now the proof
is complete. ��
Theorem 5.10 We assume that ψE has conductor oE . Let (π, V ) be an irreducible generic
representation of G whose conductor Nπ is positive. For the newform v in V (Nπ ) which
satisfies Wv(e) = 1, we have

Z(s,Wv,ΦNπ ) = 1

1 − (ν + q2 − q3)q−2q−2s − (ν + q2 − λ)q−1q−4s ,

where ν is the eigenvalue of the Hecke operator T on V (Nπ +1) and λ is that of the operator
δθ ′ on V (Nπ ).

Proof The theorem follows from Propositions 3.4 and 5.9. ��

6 Proof of Lemma 3.5

In this section, we prove Lemma 3.5. An irreducible generic representation π of G is either
supercuspidal or a submodule of IndGB (μ1 ⊗ μ2), for some μ1 and μ2. We distinguish the
cases according to the form of L-factors:
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(I) π is an unramified principal series representation, that is, π = IndGB (μ1 ⊗ μ2), where
μ1 is unramified and μ2 is trivial (Sect. 6.1);

(II) π is a supercuspidal representation (Sect. 6.2);
(III) π is a submodule of IndGB (μ1 ⊗ μ2), where μ1 is ramified (Sect. 6.3);
(IV) π is a submodule of IndGB (μ1⊗μ2), whereμ1 is unramified, but π is not an unramified

principal series representation (Sect. 6.5).

Remark 6.1 We remark that representations in cases (II)–(IV) have positive conductors. If
π is generic and supercuspidal, then by [12, Corollary 5.5], we have Nπ ≥ 2. Conductors of
the non-supercuspidal representations are determined in [10]. By the proof of Proposition 5.1
in [10], if π is non-supercuspidal and generic, then Nπ = 0 implies that π is an unramified
principal series representation. In particular, the representations in case (IV) are just the
irreducible generic subrepresentations of IndGB (μ1 ⊗μ2)with positive conductors, whereμ1

runs over the unramified quasi-characters of E×.

6.1 Proof of Lemma 3.5: Case (I)

Let μ1 be an unramified quasi-character of E× and μ2 the trivial character of E1. Suppose
that π = IndGB (μ1 ⊗ μ2) is irreducible. We show that Lemma 3.5 holds for π . In this case,
π has a non-zero K0-fixed vector. This implies Nπ = 0. Let V denote the space of π and let
v be the element in V (0) which satisfies Wv(e) = 1. By [7, (4.7)], we obtain

Z(s,Wv,Φ0) = LE (s, μ1)LE (s, μ−1
1 )LE (s, 1).

because μ1 = μ1. Due to Proposition 4.2 (iii), we have

Z(s,Wv,Φ0) = L(s, π) = LE (s, μ1)LE (s, μ−1
1 )LE (s, 1), (6.2)

which completes the proof of Lemma 3.5 in this case.

6.2 Proof of Lemma 3.5: Case (II)

Let (π, V ) be an irreducible generic supercuspidal representation of G. We show the valid-
ity of Lemma 3.5 for π . In this case, we have L(s, π) = 1 or LE (s, 1) by Proposition 4.2
(i). Let v be the element in V (Nπ ) which satisfies Wv(e) = 1. Then it follows from Theo-
rem 5.10 that Z(s,Wv,ΦNπ ) has the form 1/P(q−2s), for some P(X) ∈ C[X ]. Note that
Z(s,Wv,ΦNπ )/L(s, π) lies inC[q−2s, q2s] by the definition of L(s, π). So onemay observe
that Z(s,Wv,ΦNπ ) = L(s, π) or L(s, π)LE (s, 1)−1, as required.

6.3 Proof of Lemma 3.5: Case (III)

Suppose that an irreducible generic representation (π, V ) of G is a submodule of IndGB (μ1 ⊗
μ2), where μ1 is a ramified quasi-character of E×. In this case, we have L(s, π) = 1 or
LE (s, 1) by Proposition 4.2 (ii) and (iii) because LE (s, μ1) = LE (s, μ−1

1 ) = 1. Thus we
can show that Lemma 3.5 is valid for π as in Sect. 6.2.

6.4 Eigenvalues ν and λ

To prove Lemma 3.5 for representations in case (IV), we need more information on the
eigenvalues ν and λ defined in Sect. 5. Suppose that an irreducible generic representation
(π, V ) of G is a submodule of IndGB (μ1 ⊗ μ2), where μ1 is an unramified quasi-character
of E×. We assume that Nπ is positive.
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Remark 6.3 We identify the center Z of G with E1. In the case when μ1 is unramified, the
representation IndGB (μ1 ⊗μ2) admits the central character ωπ = μ2, so does π . Since π has
a non-zero KNπ -fixed vector, ωπ = μ2 is trivial on ZNπ = E1 ∩ (1 + pE )Nπ .

We may regard an element in V as a function in IndGB (μ1 ⊗ μ2). It follows from [10,
Corollary 4.3] that every non-zero element f in V (Nπ ) satisfies f (e) �= 0. By using this
property of newforms, we show a relation between ν and λ. We abbreviate N = Nπ .

Lemma 6.4 For f ∈ V (N ), we have

(θ ′ f )(e) = (q2μ1(�)−1 + q) f (e).

In particular, (θ ′ f )(e) �= 0 for all non-zero f ∈ V (N ).

Proof By (5.1), we have

(θ ′ f )(e) = f (ζ−1) +
∑

x∈p−1−N
F /p−N

F

f (u(0, x)).

Since f belongs to IndGB (μ1 ⊗ μ2), we obtain f (ζ−1) = δ
1/2
B (ζ−1)μ1(�

−1) f (e) =
q2μ1(�)−1 f (e) and f (u(0, x)) = f (e). So we have

(θ ′ f )(e) = q2μ1(�)−1 f (e) + q f (e) = (q2μ1(�)−1 + q) f (e),

as required. For the second assertion, it suffices to claim that q2μ1(�)−1 + q �= 0. Since
μ1 is unramified, if q2μ1(�)−1 + q = 0, then we have μ1|F× = ωE/F | · |−1

F , where ωE/F

is the non-trivial character of F× which is trivial on NE/F (E×). If this is the case, then
it follows from [9] that IndGB (μ1 ⊗ μ2) is reducible, and it contains no irreducible generic
subrepresentations (see [10, Lemma 3.6] for instance). This contradicts the assumption that
IndGB (μ1 ⊗ μ2) contains π . ��

We obtain the following relation between ν and λ:

Lemma 6.5 We have λ = (ν + q2 − q2μ1(�))(1 + q−1μ1(�)).

Proof For f ∈ V (N ), we put (θ ′ f )′ = ∑
y∈pN

E /pN+1
E

∑
z∈pN

F /pN+1
F

π(û(y, z))θ ′ f as in (5.3).
Then by (5.5), we obtain

ν(θ ′ f )(e) = (θ ′ f )′(ζ−1) +
∑

a∈oE/pE

b∈p−1−N
F /p1−N

F

(θ ′ f )(u(a, b)ζ ).

Since we regard θ ′ f and (θ ′ f )′ as functions in IndGB (μ1 ⊗ μ2), we have

(θ ′ f )′(ζ−1) = |� |−1
E μ1(�

−1)(θ ′ f )′(e) = q2μ1(�
−1)(θ ′ f )′(e)

and

(θ ′ f )(u(a, b)ζ ) = |� |Eμ1(�)(θ ′ f )(e) = q−2μ1(�)(θ ′ f )(e).

So we get

ν(θ ′ f )(e) = q2μ1(�
−1)(θ ′ f )′(e) + q2μ1(�)(θ ′ f )(e). (6.6)
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On the other hand, by (5.7), we obtain

λ f (e) = (θ ′ f )′(e) +
∑

y∈p−1
E /oE

(θ ′ f )(ζu(y, 0)),

and get

λ f (e) = (θ ′ f )′(e) + μ1(�)(θ ′ f )(e) (6.7)

in a similar fashion. By (6.6) and (6.7), we have

ν(θ ′ f )(e) = q2μ1(�
−1)(λ f (e) − μ1(�)(θ ′ f )(e)) + q2μ1(�)(θ ′ f )(e).

According to Lemma 6.4, we obtain

(ν + q2 − q2μ1(�))(q2μ1(�)−1 + q) f (e) = q2μ1(�
−1)λ f (e).

If f ∈ V (N ) is not zero, then we get f (e) �= 0. So this completes the proof. ��
By Lemma 6.5, we get a formula for zeta integrals of newforms with only ν.

Proposition 6.8 We fix a non-trivial additive character ψE of E whose conductor is oE .
Let (π, V ) be an irreducible generic representation of G whose conductor Nπ is positive
and v the newform for π such that Wv(e) = 1. Suppose that π is a subrepresentation of
IndGB (μ1 ⊗ μ2), where μ1 is an unramified quasi-character of E×. Then we have

Z(s,Wv,ΦNπ ) = LE (s, μ1)
1

1 − (ν + q2 − q3 − q2μ1(�))q−2q−2s .

Proof By Lemma 6.5, we get

λ − ν − q2 = (ν + q2 − q3 − q2μ1(�))q−1μ1(�),

and hence

1 − (ν + q2 − q3)q−2q−2s − (ν + q2 − λ)q−1q−4s

= (1 − (ν + q2 − q3 − q2μ1(�))q−2q−2s)(1 − μ1(�)q−2s).

So the assertion follows from Theorem 5.10. ��
We shall describe the Hecke eigenvalue ν by values of a function f in V (Nπ ). Recall that

ν is the eigenvalue of the Hecke operator T on V (Nπ +1). We abbreviate N = Nπ . One has

νg = Tg =
∑

k∈KN+1/KN+1∩ζKN+1ζ
−1

π(kζ )v,

for g ∈ V (N + 1). For any integer i , we set

γi = û(� i , 0) =
⎛
⎝ 1

� i 1
−� 2i/2 −� i 1

⎞
⎠ and ti =

⎛
⎝ �−i

1
� i

⎞
⎠ .

We note that if n ≥ 0, then tn lies in Kn . Recall that Lemma 5.2 in [11] gave a complete set
of representatives for KN+1/KN+1 ∩ ζKN+1ζ

−1. Thus we obtain

νg =
∑

y∈oE/pE

z∈p−N
F /p1−N

F

π(tN+1u(y, z)ζ )g +
∑

a∈oE/pE

b∈p−1−N
F /p1−N

F

π(u(a, b)ζ )g.

123



On L-factors attached to generic representations. . . 1397

Because tN+1u(y, z)ζ tN+1 = ζ−1û(−� N y,� 2N z), we get

νg = π(ζ−1)
∑

y∈pN
E /pN+1

E

z∈pN
F /pN+1

F

π(û(y, z))g +
∑

a∈oE/pE

b∈p−1−N
F /p1−N

F

π(u(a, b)ζ )g. (6.9)

See Lemma 5.4 in [11] for details. The following lemma describes ν by the values of a
function g in V (Nπ + 1) at e and γNπ .

Lemma 6.10 For g ∈ V (Nπ + 1), we have

νg(e) = (q2(μ1(�) + μ1(�)−1) + q3 − q2)g(e) + q2(q2 − 1)μ1(�)−1g(γ ),

where γ = γNπ .

Proof We abbreviate N = Nπ . By (6.9), we have

νg(e) =
∑

y∈pN
E /pN+1

E

z∈pN
F /pN+1

F

g(ζ−1û(y, z)) +
∑

a∈oE/pE

b∈p−1−N
F /p1−N

F

g(u(a, b)ζ ).

Since we regard g as an element in IndGB (μ1 ⊗ μ2), we have

g(ζ−1û(y, z)) = |� |−1
E μ1(�)−1g(û(y, z)) = q2μ1(�)−1g(û(y, z))

and

g(u(a, b)ζ ) = g(ζ ) = |� |Eμ1(�)g(e) = q−2μ1(�)g(e).

Thus, we get

νg(e) = q2μ1(�)−1
∑

y∈pN
E /pN+1

E

z∈pN
F /pN+1

F

g(û(y, z)) + q2μ1(�)g(e).

To prove the assertion, it is enough to claim that (i) g(û(y, z)) = g(γ ), for y /∈ pN+1
E ,

z ∈ pN+1
F and (ii) g(û(y, z)) = q−2μ1(�)g(e) for z /∈ pN+1

F . Actually, we obtain

νg(e) = q2μ1(�)−1(g(e) + (q2 − 1)g(γ ) + q−2μ1(�)q2(q − 1)g(e)) + q2μ1(�)g(e)

= (q2(μ1(�) + μ1(�)−1) + q3 − q2)g(e) + q2(q2 − 1)μ1(�)−1g(γ ),

as required.
We shall show the claim. (i) Suppose that y /∈ pN+1

E and z ∈ pN+1
F . Then there exists

a ∈ o×
E such that t (a)û(y, 0)t (a)−1 = û(� N , 0) = γ . Since g is fixed by KN+1, we have

g(û(y, z)) = g(û(y, 0)) = g(t (a)−1γ t (a)) = g(t (a)−1γ ).

Because we assume that μ1 is unramified, we get g(û(y, z)) = μ1(a−1)g(γ ) = g(γ ).
(ii) If z /∈ pN+1

F , then the element x = z
√

ε − yy/2 lies in pNE \pN+1
E . Using the notation

in Sect. 2.1, we write û(y, z) = û(y, x). Then we have

û(y, x) = u(−y/x, 1/x)diag(� N+1/x,−x/x,�−1−N x)tN+1u(−y/x, 1/x).

One can observe that tN+1u(−y/x, 1/x) lies in KN+1. Since g is an element in IndGB (μ1⊗μ2)

fixed by KN+1, we have

g(û(y, z)) = g(û(y, x)) = g(diag(� N+1/x,−x/x,�−1−N x)).
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The assumption x ∈ pNE \pN+1
E implies � N+1/x ∈ �o×

E , so we get g(û(y, z)) =
q−2μ1(�)μ2(−x/x)g(e). Note that x + x + yy = 0, and hence −x/x = 1 + yy/x .
Since y ∈ pNE and x ∈ pNE \pN+1

E , we obtain −x/x ∈ 1 + pNE . Thus, by Remark 6.3, we see
that μ2(−x/x) = 1, so that g(û(y, z)) = q−2μ1(�)g(e). ��

Applying Lemma 6.10 to g = θ ′ f , where f ∈ V (Nπ ), we get the following

Lemma 6.11 For any non-zero element f in V (Nπ ), we have

ν = q2(μ1(�) + μ1(�)−1) + q3 − q2

+ q2(q2 − 1)μ1(�)−1(q2μ1(�)−1 + q)−1(θ ′ f )(γ )/ f (e),

where γ = γNπ .

Proof Put g = θ ′ f ∈ V (Nπ +1). By Lemma 6.4, we have g(e) = (q2μ1(�)−1+q) f (e) �=
0. So the assertion follows from Lemma 6.10. ��

We apply Lemma 6.11 to zeta integrals of newforms.

Proposition 6.12 Under the same assumption of Proposition 6.8, we have

Z(s,Wv,ΦNπ ) = LE (s, μ1)
1

1 − αq−2s .

Here α is given by

α = μ1(�)−1 + μ1(�)−1(q2 − 1)(q2μ1(�)−1 + q)−1(θ ′ f )(γNπ )/ f (e),

for any non-zero function f in V (Nπ ).

Proof The proposition follows from Proposition 6.8 and Lemma 6.11. ��
6.5 Proof of Lemma 3.5: Case (IV)

We shall finish the proof of Lemma 3.5. The remaining representations are those in case (IV).
Let (π, V ) be an irreducible generic representation of G whose conductor is positive. We
suppose that π is a subrepresentation of IndGB (μ1 ⊗ μ2), where μ1 is unramified.

Firstly, we assume that π is a proper submodule of IndGB (μ1 ⊗ μ2). Then Proposition 4.2
(ii) implies that L(s, π) = LE (s, μ1) or LE (s, μ1)LE (s, 1). Let v be the newform in V (Nπ )

such that Wv(e) = 1. It follows from Proposition 6.12 that Z(s,Wv,ΦNπ ) has the form
LE (s, μ1) · (1/P(q−2s)), for some P(X) ∈ C[X ]. Because Z(s,Wv,ΦNπ )/L(s, π) lies in
C[q−2s, q2s], we must have Z(s,Wv,ΦNπ ) = L(s, π) or L(s, π)/LE (s, 1).

Secondly,we consider the casewhenπ = IndGB (μ1⊗μ2). The assumption Nπ > 0 implies
that μ2 is not trivial. In this case, we can show Lemma 3.5 by comparing Proposition 4.2 (iii)
with the following one in a similar fashion:

Proposition 6.13 Let μ1 be an unramified quasi-character of E× and μ2 a non-trivial
character of E1. Suppose that π = IndGB (μ1 ⊗ μ2) is irreducible. Then we have

Z(s,Wv,ΦNπ ) = LE (s, μ1)LE (s, μ−1
1 ),

where v is the newform in V (Nπ ) such that Wv(e) = 1.
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Proof Set γ = γNπ . Since μ1 is unramified, we have μ1 = μ1. By Proposition 6.12, it
enough to show that θ ′ f (γ ) = 0, for any functions f in V (Nπ ). By [10, Theorem 2.4 (ii)],
the space of KNπ+1-fixed vectors in IndGB (μ1 ⊗ μ2) is one-dimensional and consists of the
functions whose supports are contained in BKNπ+1 since we assume that μ1 is unramified.
Due to [10, Lemma 2.1], the sets Bγ KNπ+1 and BKNπ+1 = BγNπ+1KNπ+1 are disjoint. So
for any f ∈ V (Nπ ), we get (θ ′ f )(γ ) = 0 because θ ′ f is fixed by KNπ+1. This completes
the proof. ��

Now the proof of Lemma 3.5 is complete.

7 An example of a computation of L-factors

Let (π, V ) be an irreducible generic representation of G whose conductor Nπ is positive.
Suppose that π is a subrepresentation of IndGB (μ1 ⊗ μ2), where μ1 is an unramified quasi-
character of E× and μ2 is a character of E1. In this section, we determine the L-factor of π

by using the results in Sect. 6.4.

7.1 Irreducible case

Suppose that IndGB (μ1 ⊗ μ2) is irreducible. Then we have π = IndGB (μ1 ⊗ μ2) and μ2 is
not trivial because we assume that Nπ > 0.

Proposition 7.1 Let μ1 be an unramified quasi-character of E× and μ2 a non-trivial char-
acter of E1. Suppose that π = IndGB (μ1 ⊗ μ2) is irreducible. Then we have

L(s, π) = LE (s, μ1)LE (s, μ−1
1 ).

Proof Theorem 3.6 and Proposition 6.13 imply the assertion. ��
7.2 Reducible case

Suppose that IndGB (μ1⊗μ2) is reducible. Recall that we assume that IndGB (μ1⊗μ2) contains
an irreducible generic subrepresentation π . So, by [9], there are the following three cases:

(RU1) μ1 = | · |E and μ2 is trivial: Then π is the Steinberg representation StG of G and
Nπ = 2 by [10, Proposition 3.4 (i)]. (Proposition 7.6).

(RU2) μ1|F× = ωE/F | · |F , where ωE/F denotes the non-trivial character of F× which
is trivial on NE/F (E×). By [10, Proposition 3.7 (i)], we have Nπ = c(μ2) + 1.
(Propositions 7.5 and 7.6).

(RU3) μ1 is trivial and μ2 is not trivial: Then due to [10, Proposition 3.8 (i)], we get
Nπ = c(μ2). (Proposition 7.2).

Here c(μ2) denotes the conductor of μ2, that is,

c(μ2) = min{n ≥ 0 | μ2|E1∩(1+pE )n = 1}.
We fix a non-trivial additive character ψE of E with conductor oE . Let v be the newform
for π such that Wv(e) = 1. Then by Theorem 3.6, we have Z(s,Wv,ΦNπ ) = L(s, π). We
regard elements in V as functions in IndGB (μ1 ⊗ μ2). By Proposition 6.12, to determine
L(s, π) = Z(s,Wv,ΦNπ ), it is enough to compute (θ ′ f )(γNπ )/ f (e), where f is a non-zero
function in V (Nπ ). We shall determine (θ ′ f )(γNπ )/ f (e) explicitly, for each case.
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7.3 Case (RU3)

We consider the case (RU3).

Proposition 7.2 Let μ2 be a non-trivial character of E1 and (π, V ) the irreducible generic
subrepresentation of IndGB (1 ⊗ μ2). Then we have

L(s, π) = LE (s, 1)2.

Proof It follows from [10, Proposition 3.8] that V (n) coincides with the space of Kn-fixed
vectors in IndGB (1 ⊗ μ2) for all n. So we may apply the argument in the proof of Propo-
sition 6.13, and get (θ ′ f )(γNπ ) = 0, for any f ∈ V (Nπ ). By Proposition 6.12, we obtain
Z(s,Wv,ΦNπ ) = LE (s, 1)2, where v is the newform in V (Nπ ) such that Wv(e) = 1. The
assertion follows from this and Theorem 3.6. ��
7.4 Case (RU2-I)

Let us consider the case (RU2). We further assume that μ2 is trivial. The remaining case
is treated in the next subsection. Then IndGB (μ1 ⊗ μ2) has the trivial central character, so
does π . By [10, Proposition 3.7 (i)], we get Nπ = 1. Since μ1|F× = ωE/F | · |F , we have
μ1(�) = −q−1.

Lemma 7.3 For f ∈ V (1), we have

(θ ′ f )(γ1) = (q + 1) f (e).

Proof We abbreviate γ = γ1. Set g = θ ′ f ∈ V (2) and γ ′ = t2γ t2 = u(−�−1, 0). We have
γ = t2γ ′t2 = ζ−1t1γ ′t2. Since g is a function in IndGBμ1 ⊗ μ2 which is fixed by K2 and
t2 ∈ K2, we obtain g(γ ) = g(ζ−1t1γ ′t2) = q2μ1(�

−1)g(t1γ ′). By (5.1), we get

g(t1γ
′) = f (t1γ

′ζ−1) +
∑

x∈p−2
F /p−1

F

f (t1γ
′u(0, x)),

and hence

g(γ ) = q2μ1(�
−1) f (t1γ

′ζ−1) + q2μ1(�
−1)

∑
x∈p−2

F /p−1
F

f (t1γ
′u(0, x)). (7.4)

Firstly, we get t1γ ′ζ−1 = t1ζ−1ζγ ′ζ−1. Note that t1ζ−1 = ζ t1 and ζγ ′ζ−1 = u(−1, 0).
We get t1γ ′ζ−1 = ζ t1u(− 1, 0). Since t1u(− 1, 0) ∈ K1 and f ∈ V (1), we obtain

f (t1γ
′ζ−1) = f (ζ t1u(−1, 0)) = f (ζ ) = q−2μ1(�) f (e).

Secondly,we get t1γ ′u(0, x) = t1u(−�−1, x) = û(1,� 2x)t1. Since t1 ∈ K1 and f ∈ V (1),
we obtain

f (t1γ
′u(0, x)) = f (û(1,� 2x)t1) = f (û(1,� 2x)).

Set z = � 2x
√

ε − 1/2. Then z lies in o×
E because � 2x ∈ p2E . With the notation in Sect. 2.1,

we write û(1,� 2x) = û(1, z). We use the relation

û(1, z) = u(−1/z, 1/z)diag(�/z,−z/z,�−1z)t1u(−1/z, 1/z).
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By z ∈ o×
E , we have t1u(−1/z, 1/z) ∈ K1. Recall that f is a function in (IndGBμ1 ⊗ μ2)

which is fixed by K1. So we obtain

f (t1γ
′u(0, x)) = f (diag(�/z,−z/z,�−1z)) = q−2μ1(�) f (e)

because z lies in o×
E and we assume that μ2 is trivial. Finally, by (7.4), we get g(γ ) =

(q + 1) f (e), as required. ��

Proposition 7.5 Let μ1 be an unramified quasi-character of E× which satisfies μ1|F× =
ωE/F | · |F , and μ2 the trivial character of E1. For the irreducible generic subrepresentation
π of IndGB (μ1 ⊗ μ2), we have

L(s, π) = LE (s, μ1)LE (s, 1).

Proof Wemay apply Proposition 6.12. Due to Lemma 7.3, the number α in Proposition 6.12
satisfies

α = μ1(�)−1 + μ1(�)−1(q2 − 1)(q2μ1(�)−1 + q)−1(q + 1) = 1,

since μ1(�) = −q−1. Now the assertion follows from Theorem 3.6 and Proposition 6.12. ��
7.5 Cases (RU1) and (RU2-II)

Suppose that an irreducible generic representationπ ofG is a subrepresentation of IndG(μ1⊗
μ2). We assume that μ1 and μ2 satisfy one of the following conditions:

(1) μ1 = | · |E and μ2 is trivial;
(2) μ1 is an unramified quasi-character of E× such that μ1|F× = ωE/F | · |F , and μ2 is a

non-trivial character of E1.

In the first case, we have Nπ = 2 by [10, Proposition 3.4] (i), and π has the trivial central
character. In the second case, we get Nπ = c(μ2) + 1 ≥ 2 by [10, Proposition 3.7 (i)], and
nπ = c(μ2) by Remark 6.3.

Proposition 7.6 Suppose that an irreducible generic representation π satisfies one of the
assumptions in this subsection. Then we have

L(s, π) = LE (s, μ1).

Proof In both cases, we have Nπ ≥ 2 and Nπ > nπ . So we may apply the results in [11].
Suppose that ψE has conductor oE . Let v be the newform for π such that Wv(e) = 1.
Then by Proposition 3.4 and [11, Proposition 5.12], we see that Z(s,Wv,ΦNπ ) has the form
1/P(q−2s), where P(X) is a polynomial inC[X ] such that P(0) = 1 and deg P(X) ≤ 1. So
Proposition 6.12 implies that Z(s,Wv,ΦNπ ) = LE (s, μ1). Now the assertion follows from
Theorem 3.6. ��

8 L-factors of the depth zero supercuspidal representations

In this section,wedetermine L-factors of the generic depth zero supercuspidal representations
of G.
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8.1 Regular cuspidal representations of U(2, 1)(kF)

For any subgroup S of G = U(2, 1)(F), we denote by S the subgroup of G = U(2, 1)(kF )

which corresponds to S. For example, B is the Borel subgroup of G consisting of the upper
triangular elements with unipotent radical U , and

H =
⎧⎨
⎩

⎛
⎝a 0 b
0 1 0
c 0 d

⎞
⎠ ∈ G

⎫⎬
⎭ 
 U(1, 1)(kF ).

Since kF is a finite field, we have G = U(2, 1)(kF ) 
 U(3)(kF ) and H 
 U(2)(kF ). In [6],
Ennola classified the irreducible representations of these two groups by giving the character
tables.

Let τ be a representation of G. For any subgroup S of G, we denote by τ S the space of
S-fixed vectors in τ . A representation τ of G is called cuspidal if τU = {0}. We say that
τ is regular when HomU (τ, ψ) �= {0}, where ψ is a non-degenerate character of U . If τ is
irreducible and regular, then the space HomU (τ, ψ) is one-dimensional.

For any representation τ of G, we denote by χτ the character of τ . We use the notation of
irreducible characters of G in [6]. There are the following three kinds of irreducible cuspidal
characters.

(C1) χ
(t)
q2−q

, 1 ≤ t ≤ q + 1. The corresponding representation is (q2 − q)-dimensional and
non-regular.

(C2) χ
(t,u,v)

(q−1)(q2−q+1)
, 1 ≤ t < u < v ≤ q + 1. The corresponding representation is (q −

1)(q2 − q + 1)-dimensional and regular.
(C3) χ

(t)
(q+1)(q2−1)

, 1 ≤ t ≤ q3, t �≡ 0 (mod q2 − q + 1). The corresponding representation

is (q + 1)(q2 − 1)-dimensional and regular.

Proposition 8.1 Let τ be an irreducible regular cuspidal representation of G.

(i) dim τ BH = 1.
(ii) dim τ H ≤ 1. The equality holds if and only if χτ = χ

(t,u,q+1)
(q−1)(q2−q+1)

for some 1 ≤ t <

u < q + 1.

Proof (i) Since τ is regular, the restriction of τ to U contains a non-degenerate character
ψ . The group UH lies in the kernel of ψ , so τ has a non-zero UH -fixed vector. Because
UH is a normal subgroup of U , the group U acts on the space τUH . We regard τUH as
U -module. Then τUH is a sum of one-dimensional representations of U since U/UH is
abelian. The cuspidality of τ implies that τUH is a sum of non-degenerate characters of
U . Since the diagonal subgroup TH of H acts transitively on the set of the non-degenerate
characters of U , every non-degenerate character of U occurs in τUH . Recall that for any
non-degenerate character ψ of U , we have dimHomψ(τ, ψ) = 1. Thus, every ψ occurs in

τUH with multiplicity one. We fix a non-degenerate character ψ of U and take a vector v in
τUH so that U acts on Cv by ψ . Then for any a ∈ k×

E , the group U acts on Cτ(t (a−1))v by
ψa , where

ψa(u) = ψ(t (a)ut (a−1)), u ∈ U .
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We therefore have τUH = ⊕
a∈k×

E
Cτ(t (a−1))v.Note that BH = TH ·UH and k×

E 
 TH ; a →
t (a). If we take a generator b of a cyclic group k×

E , then we see that
∑

0≤i≤q2−2 τ(bi )v is a

basis for τ BH . So we conclude that dim τ BH = 1.
(ii) Since BH ⊂ H , we have τ H ⊂ τ BH . By (i), we get dim τ H ≤ dim τ BH = 1. For any

two class functions χ1 and χ2 of H , we define

(χ1, χ2) = 1

|H |
∑
h∈H

χ1(h)χ2(h).

We denote by 1H the trivial representation of H . By Schur orthogonality relations, we have

(χτ , 1H ) = 1
|H |

∑
h∈H χτ (h) = dim τ H . Using the character table in [6], one can check that

(χ
(t,u,q+1)
(q−1)(q2−q+1)

, 1H ) = 1, for 1 ≤ t < u < q + 1

and that (χ, 1H ) = 0 for any other irreducible regular cuspidal characters of G. This shows
the assertion. ��

Let τ be an irreducible regular cuspidal representation of G. By Proposition 8.1 (i), we
have dim τ BH = 1. We fix a non-zero element v0 in τ BH and consider the vector∑

u∈UH

τ(uw)v0 =
∑
a∈kF

τ(u(0, a)w)v0,

where

w =
⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠ , u(0, a) =

⎛
⎝1 0 a

√
ε

0 1 0
0 0 1

⎞
⎠ ∈ G

and we are regarding
√

ε ∈ oE as an element in kE = oE/pE . One may check that∑
a∈kF τ(u(0, a)w)v0 also belongs to τ BH . Since τ BH is one-dimensional, there exists an

element α in C such that ∑
a∈kF

τ(u(0, a)w)v0 = αv0.

The following lemma determines α.

Lemma 8.2 We have α = q if τ H �= {0}, and α = −1 if τ H = {0}.
Proof Note that we have τ H ⊂ τ BH because BH ⊂ H . Suppose that τ H �= {0}. Then it fol-
lows from Proposition 8.1 (i) that v0 lies in τ H = τ BH . So we have

∑
a∈kF τ(u(0, a)w)v0 =

qv0 and α = q since u(0, a)w ∈ H .
Suppose that τ H = {0}. Then we get

ατ(w)v0 =
∑
a∈kF

τ(wu(0, a)w)v0 = v0 +
∑
a �=0

τ(wu(0, a)w)v0.

For 0 �= a ∈ kF , we have

wu(0, a)w = u(0, (aε)−1)w

⎛
⎝a

√
ε 0 1

0 1 0
0 0 −(a

√
ε)−1

⎞
⎠ u(0, (aε)−1).
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Since v0 is fixed by BH , we obtain

ατ(w)v0 = v0 +
∑
a �=0

τ(u(0, (aε)−1)w)v0

= v0 +
∑
a∈kF

τ(u(0, a)w)v0 − τ(w)v0

= v0 + αv0 − τ(w)v0,

and hence (α + 1)τ (w)v0 = (α + 1)v0. If α + 1 �= 0, then by an Iwasawa decomposition
of H , we see that v0 is fixed by H . This contradicts the assumption that τ H = {0}. So we
conclude that α = −1 as required. ��
8.2 Generic depth zero supercuspidal representations

Every irreducible depth zero supercuspidal representation of G is induced from a maximal
compact subgroup P0 of G. Up to conjugation, there are two maximal compact subgroup of
G. Thus we may assume P0 = K0 = GL3(oE ) ∩ G or

Z0K1 =
⎛
⎝oE oE p−1

E
pE oE oE
pE pE oE

⎞
⎠ ∩ G.

We denote by P1 the pro-p radical of P0. Then P0/P1 is a reductive group over kF . We
note that if P0 = GL3(oE ) ∩ G, then P1 = (1 + M3(pE )) ∩ G and P0/P1 is isomorphic to
G = U(2, 1)(kF ). If P0 = Z0K1, then we have

P1 =
⎛
⎝1 + pE oE oE

pE 1 + pE oE
p2E pE 1 + pE

⎞
⎠ ∩ G

and P0/P1 
 U(1, 1)(kF ) × U(1)(kF ). Let ρ be an irreducible cuspidal representation of
P0/P1. Then π = c-IndGP0ρ is an irreducible depth zero supercuspidal representation of
G, where ρ stands for the inflation of ρ to P0. We note that every irreducible depth zero
supercuspidal representation of G is obtained in this way.

Proposition 8.3 With the notation as above, π = c-IndGP0ρ is generic if and only if P0 = K0

and ρ is regular.

Proof The proof is exactly same as that of Proposition 2.2 in [2]. ��
Lemma 8.4 For i = 1, 2, let πi = c-IndGK0

ρi be an irreducible depth zero supercuspidal
representation of G, where ρi is the inflation of an irreducible cuspidal representation ρi of
G. Suppose that π1 is isomorphic to π2. Then ρ1 is isomorphic to ρ2.

Proof Suppose that π1 is isomorphic to π2. Since ρi is contained in the restriction of πi to
K0, there is an element g in K0\G/K0 such that

Homg K0∩K0(
gρ1, ρ2) �= {0}

where gK0 = gK0g−1 and gρ1 is the representation of gK0 defined by gρ1(k) = ρ1(g−1kg),
k ∈ gK0. By a Cartan decomposition G = ⋃

i≥0 K0ζ
i K0, we may assume g = ζ i . Suppose

that i > 0. Thenwe have Û (oE ) ⊂ gK0∩K0. Observe that g−1Û (oE )g ⊂ (1+M3(pE ))∩G.
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This implies that Û (oE ) lies in the kernel of gρ1. By Homg K0∩K0(
gρ1, ρ2) �= {0}, the

representation ρ2 has a non-zero Û (oE )-fixed vector. This contradicts the cuspidality of ρ2
because the image of Û (oE ) in G = K0/P1 is a maximal unipotent radical. Therefore we
conclude that i = 0 and g = ζ 0 = 1. Since HomK0(ρ1, ρ2) �= {0} and ρ1, ρ2 are irreducible,
we have ρ1 
 ρ2, and hence ρ1 
 ρ2, as required. ��
8.3 Conductors of depth zero supercuspidal representations

From now on, we assume that P0 = K0 = GL3(oE ) ∩ G, P1 = (1 + M3(pE )) ∩ G, and ρ

is an irreducible regular cuspidal representation of G 
 K0/P1. Then π = c-IndGK0
ρ is an

irreducible generic depth zero supercuspidal representation of G.

Proposition 8.5 Let π = c-IndGK0
ρ be an irreducible generic depth zero supercuspidal

representation of G as above.

(i) 2 ≤ Nπ ≤ 3.
(ii) Nπ = 2 if and only if ρ has a non-zero H-fixed vector.

Proof (i) By [12, Corollary 5.5 (i)], we have 2 ≤ Nπ . Observe

K0 ∩ ζK3ζ
−1 =

⎛
⎝oE pE oE
p2E 1 + p3E pE
pE p2E oE

⎞
⎠ ∩ G.

This implies that the image of K0 ∩ ζK3ζ
−1 in K0/P1 is BH . By Proposition 8.1 (i), we can

take a non-zero BH -fixed vector v0 in ρ. We regard v0 as a non-zero K0 ∩ ζK3ζ
−1-fixed

vector in ρ. Then the function

f (g) =
{

ρ(p)v0, for g = pζk, p ∈ K0, k ∈ K3,

0, otherwise

is well-defined. Since f is a non-zero K3-fixed vector in π = c-IndGK0
ρ, we obtain Nπ ≤ 3.

(ii) Since we have seen that 2 ≤ Nπ , it suffices to show that V (2) �= {0} if and only if ρ

has a non-zero H -fixed vector. Suppose that ρ has a non-zero H -fixed vector v0. Then we
can construct a non-zero function f in V (2) as follows: One may check that

K0 ∩ ζK2ζ
−1 =

⎛
⎝oE pE oE
pE 1 + p2E pE
oE pE oE

⎞
⎠ ∩ G.

Therefore the image of K0 ∩ ζK2ζ
−1 in K0/P1 is H . Regarding v0 as a K0 ∩ ζK2ζ

−1-fixed
vector in ρ, we can define a non-zero function f in V (2) by

f (g) =
{

ρ(p)v0, for g = pζk, p ∈ K0, k ∈ K2,

0, otherwise.

This implies V (2) �= {0}.
Suppose that V (2) �= {0}. Thenπ has a non-zero K2-fixed vector v. Sincewe are assuming

that π is of depth zero, there exists a non-zero (1 + M3(pE )) ∩ G-fixed vector in π . This
implies that the group Z1 = (1 + pE ) ∩ Z acts trivially on π . So we see that π(ζ )v is fixed
by

Z1 · ζK2ζ
−1 =

⎛
⎝oE pE oE
pE 1 + pE pE
oE pE oE

⎞
⎠ ∩ G.
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Since P1 ⊂ Z1 ·ζK2ζ
−1, the vector π(ζ )v lies in π P1 . If we regard π P1 as a K0/P1-module,

π P1 is decomposed into a sum of irreducible cuspidal representations ofG 
 K0/P1 because
of Theorem 8.9 in [13]. By Lemma 8.4 and a standard argument, one can show that π P1 is
isomorphic to ρ. Since the image of Z1 ·ζK2ζ

−1 in K0/P1 is H , π(ζ )v is a non-zero H -fixed
vector π P1 
 ρ. This completes the proof. ��
Remark 8.6 Let π = c-IndGK0

ρ be an irreducible generic depth zero supercuspidal represen-

tation of G. Recall that ρH ⊂ ρBH . By the proof of Proposition 8.5, a newform f for π is
given by

f (g) =
{

ρ(p)v0, g = pζk, p ∈ K0, k ∈ KNπ ,

0, otherwise,

where v0 is a non-zero BH -fixed vector in ρ.

8.4 L-factors of depth zero supercuspidal representations

We recall from [11] a formula of L-factors L(s, π) of irreducible generic supercuspidal
representations (π, V ). We abbreviate N = Nπ . Let λ be the eigenvalue of the Hecke
operator T on V (N ). By Theorem 4.2, Propositions 3.5 and 5.12 in [11], we have

L(s, π) = 1

1 − (λ + q2)q−2−2s . (8.7)

We further recall from [11] a description of λ. Let δ : V (N ) → V (N − 1) be the level
lowering operator. For v ∈ V (N ), it follows from Lemmas 5.4 and 5.9 in [11] that

λv = T v = π(ζ−1)δv −
∑

y∈p−1
E /oE

π(u(y, 0))v

+
∑

a∈oE/pE

∑
b∈p−N

F /p2−N
F

π(u(a, b)ζ )v.

Since V (N − 1) = {0}, we have δv = 0 so that

λv = −
∑

y∈p−1
E /oE

π(u(y, 0))v +
∑

a∈oE/pE

∑
b∈p−N

F /p2−N
F

π(u(a, b)ζ )v.

We assume that π = c-IndGK0
ρ is an irreducible generic depth zero supercuspidal represen-

tation of G. Take f ∈ V (N ) as in Remark 8.6. Then we obtain

λ f (ζ ) = −
∑

y∈p−1
E /oE

f (ζu(y, 0)) +
∑

a∈oE/pE

∑
b∈p−N

F /p2−N
F

f (ζu(a, b)ζ ).

Note that f (ζ ) is a non-zero element in ρBH . Since ζu(y, 0) = ζu(y, 0)ζ−1ζ = u(� y, 0)ζ ,
we have ∑

y∈p−1
E /oE

f (ζu(y, 0)) =
∑

y∈oE/pE

f (u(y, 0)ζ ) =
∑

y∈oE/pE

ρ(u(y, 0)) f (ζ ).

Since we are assuming that ρ is cuspidal, we have ρU = {0}. Because f (ζ ) ∈ ρBH ⊂ ρUH

andU normalizesUH , we see that
∑

y∈oE/pE
ρ(u(y, 0)) f (ζ ) lies in ρU = {0}. So we obtain∑

y∈p−1
E /oE

f (ζu(y, 0)) = 0, and hence
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λ f (ζ ) =
∑

a∈oE/pE

∑
b∈p−N

F /p2−N
F

f (ζu(a, b)ζ ).

By ζu(a, b)ζ = ζu(a, 0)ζ−1ζu(0, b)ζ = u(�a, 0)ζu(0, b)ζ and u(�a, 0) ∈ (1 +
M3(pE )) ∩ G ⊂ ker ρ, we have

f (ζu(a, b)ζ ) = ρ(u(�a, 0)) f (ζu(0, b)ζ ) = f (ζu(0, b)ζ )

and

λ f (ζ ) = q2
∑

b∈p−N
F /p2−N

F

f (ζu(0, b)ζ ). (8.8)

Proposition 8.9 Let π = c-IndGK0
ρ be an irreducible generic depth zero supercuspidal

representation of G.

(i) If Nπ = 2, then we have L(s, π) = LE (s, 1).
(ii) If Nπ = 3, then L(s, π) = 1.

Proof (i) Suppose that N = Nπ = 2. Then, by Remark 8.6, the support of f ∈ V (2) is
K0ζK2. Observe that

K0ζK2 ⊂
⎛
⎝pE oE p−1

E
pE oE p−1

E
pE oE p−1

E

⎞
⎠ .

For any b ∈ p−N
F /p2−N

F , the (3, 3)-entry of ζu(0, b)ζ is �−2. So we have ζu(0, b)ζ /∈
K0ζK2 and f (ζu(0, b)ζ ) = 0. By (8.8), we get λ f (ζ ) = 0 and λ = 0. Therefore it follows
from (8.7) that L(s, π) = 1

1−q−2s = LE (s, 1).
(ii) If N = Nπ = 3, then Remark 8.6 implies that the support of f is K0ζK3. One may

check that

K0ζK3 ⊂
⎛
⎝pE oE p−2

E
pE oE p−2

E
pE oE p−2

E

⎞
⎠ .

We see that if b /∈ p−2
F , then ζu(0, b)ζ /∈ K0ζK3 and hence f (ζu(0, b)ζ ) = 0. Therefore

we have

λ f (ζ ) = q2
∑

b∈p−2
F /p−1

F

f (ζu(0, b)ζ )

by (8.8). Since ζu(0, b)ζ = ζu(0, b)ζ−1ζ 2 = u(0,� 2b)ζ 2, we get

λ f (ζ ) = q2
∑

b∈oF/pF

ρ(u(0, b)) f (ζ 2).

Note that f is fixed by K3 and ζ 2 lies in wζK3. Thus we have

λ f (ζ ) = q2
∑

b∈oF/pF

ρ(u(0, b)) f (wζ ) = q2
∑

b∈oF/pF

ρ(u(0, b)w) f (ζ ).

Recall that f (ζ ) is a non-zero element in ρBH . By the assumption that Nπ = 3 and Propo-
sition 8.5 (ii), we have ρH = {0}. So Lemma 8.2 implies λ f (ζ ) = −q2 f (ζ ) and λ = −q2.
We conclude L(s, π) = 1 because of (8.7). ��
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1408 M. Miyauchi

Remark 8.10 Let π be an irreducible generic supercuspidal representation of G. It follows
from Proposition 4.2 (i) that L(s, π) = 1 or LE (s, 1). Propositions 8.1, 8.5 and 8.9 imply
that both cases occur.
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