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Abstract Let G be the unramified unitary group in three variables defined over a p-adic field
with p # 2. In this paper, we establish a theory of newforms for the Rankin—Selberg integral
for G introduced by Gelbart and Piatetski-Shapiro. We describe L and e-factors defined
through zeta integrals in terms of newforms. We show that zeta integrals of newforms for
generic representations attain L-factors. As a corollary, we get an explicit formula for e-
factors of generic representations.
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1 Introduction

This paper is the sequel to the author’s works [10-12] on newforms for unramified U(2, 1).
First of all, we review the theory of newforms for GL(2) by Casselman and Deligne. Let F be
a non-archimedean local field of characteristic zero with ring of integers o and its maximal
ideal pr. For each non-negative integer n, we define an open compact subgroup Io(p) of
GL,(F) by

X
ofF ofF
Io(pt) = .
b= (311 2)
For an irreducible generic representation (ir, V') of GL,(F), we denote by V (n) the Fg(p’}p)-
fixed subspace of V, that is,

Vin)={veV]nkv=nr, kelopp}

B Michitaka Miyauchi
michitaka.miyauchi @ gmail.com

1 Graduate School of Education, Okayama University, 3-1-1 Tsushima-naka, Kita-ku,

Okayama 700-8350, Japan

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-017-2003-z&domain=pdf

1382 M. Miyauchi

Let U denote the unipotent radical of the upper-triangular Borel subgroup of GL,(F). We
regard a non-trivial additive character ¥ r of F' with conductor o as a character of U in the
usual way, and denote by W(mr, ¥ ) the Whittaker model of 7 with respected to ¥ 7. Then
the following theorem holds:

Theorem 1.1 [3] Let (;r, V) be an irreducible generic representation of GLo (F).

(i) There exists a non-negative integer n such that V (n) # {0}.
(i1) Put c(wr) = min{n > 0| V(n) # {0}}. Then the space V (c(m)) is one-dimensional.
(iii) Foranyn > c(w), we have dimV(n) = n — c(w) + 1.
@iv) If v is a non-zero element in V (c(r)), then the corresponding Whittaker function W,
in W(m, ¥r) satisfies Wy(e) # 0, where e denotes the identity element in GL (F).

We call the integer c(r) the conductor of w and V (c(m)) the space of newforms for m.
Newforms and conductors relate to L and e-factors as follows:

Theorem 1.2 [3,5] Let w be an irreducible generic representation of GL (F).

(1) Suppose that W is the newform in the Whittaker model of w. Then the corresponding
Jacquet—Langlands’s zeta integral Z (s, W) attains the L-factor of 7.
(ii) The e-factor e(s, 7w, Yr) of w is a constant multiple ofq;C(”)s, where qF stands for the

cardinality of the residue field of F.

Similar results were obtained by Jacquet et al. [8] and Reeder [14] for GL(n). Recently,
Roberts and Schmidt [15] established a theory of newforms for the irreducible representations
of GSp(4) with trivial central characters. Our main concern is to establish a newform theory
for unramified U(2, 1).

We review results in [10-12] comparing Theorems 1.1 and 1.2. Let U(2, 1) denote the
unitary group in three variables associated to the unramified quadratic extension E/F. We
assume that the residual characteristic of F is odd. In [12], the author introduced a family of
open compact subgroups of U(2, 1), and defined the notion of conductors and newforms for
generic representations. He proved an analog of Theorem 1.1 (i) and (ii) for all the generic
representations, and that of (iii) and (iv) for the generic supercuspidal representations. For
U(2, 1), we consider L and e-factors defined through the Rankin—Selberg integral introduced
by Gelbart and Piatetski-Shapiro [7] and Baruch [1]. In [11], the author showed a theorem
analogous to Theorem 1.2 (ii) assuming Conjecture 4.1 in [11] on L-factors, which is an
analog of Theorem 1.2 (i). In loc. cit., he also proved that his conjecture holds for the
generic supercuspidal representations. To show the validity of his conjecture for the generic
representations, he determined conductors of the generic non-supercuspidal representations,
and gave an explicit realization of those newforms in [10]. In loc. cit., he also proved an
analog of Theorem 1.1 (iii) and (iv) for the generic non-supercuspidal representations. Now
we are ready to show that Conjecture 4.1 in [11] holds for all the generic representations of
U(2, 1), that is, zeta integrals of newforms attain L-factors.

We explain our method. Unlike the cases of GL(n) and GSp(4), Gelbart and Piatetski-
Shapiro’s zeta integral involves a section which has the form f (s, h, @), where & is an
element in U(1, 1) and @ is a Schwartz function on F2. Thus, the usual investigation on
Whittaker functions is not enough to determine the L-factor, which is defined as the greatest
common divisor of zeta integrals, and we can not use any explicit formula of L-factors for
U(2, 1). However it is easy to determine the L-factors for U(2, 1) up to a multiple of Lg (s, 1)
(Proposition4.2). Here L g (s, 1) stands for the Hecke-Tate factor of the trivial representation 1
of E*, and the section f (s, h, @) yields L g (s, 1). We will compare zeta integral of newforms
with our rough estimation of L-factors, and show that the difference is at most Lg (s, 1)
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(Lemma 3.5). Hence we can use the same trick in [11]. If the difference is Lg (s, 1), then
it contradicts the fact that the e-factor is monomial (see the proof of Theorem 3.6). So we
conclude that zeta integrals of newforms attain L-factors.

The main body of this article is the proof of Lemma 3.5. For representations of conductor
zero, we can use Casselman—Shalika’s formula for the spherical Whittaker functions in [4].
To compute zeta integrals of newforms in positive conductor case, we follow the method by
Roberts and Schmidt for GSp(4) in [15]. They utilized Hecke operators acting on the space
of newforms, and obtained a formula for zeta integrals in terms of Hecke eigenvalues. There
are two problems to apply their method to U(2, 1). Firstly, they assumed that representations
of GSp(4) have trivial central characters. This assumption is essential in their computation
of Hecke operators. Secondly, for an irreducible generic representation 7w of U(2, 1) whose
conductor is positive, it will turns out that the degree of the L-factor of 7 is at most 4 with
respect to g (see Proposition 7.1 for example). Therefore we need two Hecke eigenvalues
to describe zeta integrals of newforms. But, in the usual way, we have only one good Hecke
operator which is represented by the element diag(z, 1, @ ~!), where @ is a uniformizer of
F. We explain how to overcome these two problems. Let V denote the space of 7, V (n) its
subspace consisting of the vectors fixed by the level n subgroup, and N, the conductor of 7.
We consider the following two operators:

(1) The Hecke operator T on V(N + 1) which is represented by the element diag
(@, 1, )

(2) The composite map of the level raising operator 6" : V(N;) — V(N + 1) and the
level lowering one § : V(N + 1) — V(Ny).

In [10], we have seen that both V(N ) and V (N, + 1) are one-dimensional, and hence the
operators T and § o 6’ have eigenvalues v and A. Since the central character of 7 is trivial
on the level N, subgroup, we can apply the method by Roberts and Schmidt to compute the
Hecke operator T on V (N, + 1), and get a formula of zeta integrals of newforms in terms
of v and A (Theorem 5.10).

We summarize the contents of this paper. In Sect. 2, we fix the notation for representa-
tions of unramified U(2, 1), and recall the theory of Rankin—Selberg integrals introduced
by Gelbart, Piatetski-Shapiro and Baruch. In Sect. 3, we recall the notion of newforms for
U(2, 1), and prove our main Theorem 3.6 assuming Lemma 3.5. In Sect. 4, we roughly esti-
mate L-factors according to the classification of the irreducible representations of U(2, 1).
In Sect. 5, we give a formula for zeta integrals of newforms in terms of two eigenvalues v
and XA. The proof of Lemma 3.5 is finished in Sect. 6. In Sect. 7, we give an example of an
explicit computation of L-factors, for some non-supercuspidal representations. In Sect. 8,
we determine L-factors of the depth zero supercuspidal representations.

A further direction of this research is to compare L and e-factors defined by Gelbart and
Piatetski-Shapiro’s integral with those of L-parameters. It is also an interesting problem to
generalize our result to other p-adic groups, for example, ramified U(2, 1) and unitary groups
in odd variables.

2 Gelbart and Piatetski-Shapiro’s integral

In Sect. 2.1, we fix our notation for the unramified group U(2, 1) that we use throughout
this paper. In Sect. 2.2, we recall from [1] the theory of zeta integrals for U(2, 1) which is
introduced by Gelbart and Piatetski-Shapiro in [7]. We also recall the definition of L and
e-factors attached to generic representations of U(2, 1) in Sects. 2.3 and 2.4 respectively.
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2.1 Notations

Let F be a non-archimedean local field of characteristic zero, oF its ring of integers, pr the
maximal ideal in o, and o = @ a uniformizer of F. We denote by | - | ¢ the absolute value
of F normalized so that |r|r = g~!, where ¢ = g is the cardinality of the residue field
or /pFr. We use the analogous notation for any non-archimedean local fields. Throughout this
paper, we assume that the residual characteristic of F is different from two.

Let E = F[,/€] be the unramified quadratic extension over F, where € is a non-square
element in 0. Then & = @ is a common uniformizer of E and F. Because the cardinality
of the residue field of E is equal to g2, we denote by | - | ¢ the absolute value of E normalized
so that ||z = g 2. We realize the unramified unitary group in three variables defined over
Fas G ={g € GL3(E) | "gJg = J}, where ~ is the non-trivial element in Gal(E/F) and

0 01
J=1010
100

We denote by e the identity element of G.

Let B be the Borel subgroup of G consisting of the upper triangular elements in G, T
its diagonal subgroup, and U the unipotent radical of B. We write U for the opposite of U.
Then we have

1 x yJe—xx/2

U=Jukx,y)=10 1 —X xeE yeF
00 1
1 x vy

=qux,y)={0 1 x| |x,yeE, y+y+xx=0
00 1

and
U= {ﬁ(x,y) =u(x,y)|lx€E,ye F}
= {ﬁ(x,y) ="u(x,y)|x,y € E, y—l—?—i—x?:O},

where ! denotes the transposition of matrices. In most part of this paper, we write u(x, y) for
elements in U. The notion u(x, y) will appear only in the proofs of Lemmas 6.10 and 7.3.
We identify the subgroup

H =

o O

0 b
1 0)eG
0 d

of G withU(1,1). Weset By = BNH, Uy =UNHand Ty =T N H. Then By is the
upper triangular Borel subgroup of H with Levi decomposition By = Ty Upg. There exists
an isomorphism between E* and Ty which is given by

t: EX>~Ty,ar ta) =

S O

0 0
1 0
0 a!

A non-trivial additive character g of E defines the following character of U, which is
also denoted by Y g:

Yew(x,y) = Ye(x), forulx,y) e U.
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We say that a smooth representation 7 of G is generic if Homy (7, ¥ g) # {0}. Let (;r, V) be
an irreducible generic representation of G. Then there exists a unique embedding of 7 into
Indgwg up to scalars. The image W(m, ¥g) of 7 in IndgwE is called the Whittaker model
of . For an element v in V, we denote by W, the function in W(rr, ¥ g) corresponding to v.

We identify the center Z of G with the norm-one subgroup E! of E*, and define open
compact subgroups of Z by

Zo=Z, Z,=ZN {1 +yp}), forn > 1.

For an irreducible admissible representation 7 of G, we define the conductor n, of the central
character w, of = by

ny = min{n > 0| wx|z, = 1}.
2.2 Zeta integrals

Let C°(F 2) denote the space of locally constant, compactly supported functions on F2. For
D e CSO(FZ) and h € H, we define a function f (s, h, @) on C as in [11, section 3.1]. Let
7 be an irreducible generic representation of G. For W € W(rr, Yg) and @ € C°(F 2), we
define the zeta integral Z(s, W, @) by

Z(s, W, ®) = / W(h) f(s, h, D)dh,
Up\H

where dh is the Haar measure on Uy \ H normalized so that the volume of Uy\Uy(H N

GL,(0oF)) is one. By [1, Proposition 3.4], Z(s, W, @) absolutely converges to a function in

C(q~%*) when Re(s) is sufficiently large.

Remark 2.1 Originally, Gelbart and Piatetski-Shapiro introduces a family of zeta integral
of the form Z(s, W, @, x), where x is a quasi-character of E* (see [1]). In this paper, we
consider the case when y is a trivial character of E*.

2.3 L-factors

The L-factor of an irreducible generic representation 7 of G is defined as follows. Let I; be
the subspace of C(q’zs) spanned by Z(s, W, @) where @ € Cfo(Fz), W e W(m, Yg) and
¥ runs over all of the non-trivial additive characters of E. By [1, p. 331], I, is a fractional
ideal of C[q_zs, q2s ] which contains C. Thus, there exists a polynomial P (X) in C[X] such
that P(0) = 1and 1/P (g —2s5) generates I, as Clg —2s qz‘v]-module. We define the L-factor
L(s, ) of m by

1

L S, T) = ———=——.
( ’ ) ( 25‘)
2.4 S-FaCtOI‘S

Let ¥/ be a non-trivial additive character of F with conductor p;(W ). We normalize the
Haar measure on F2 so that the volume of 07 @ o p equals to qc(‘“‘). Foreach @ € C?O(Fz),

let & denote the Fourier transform of @ defined in [1, section 2]. Then we have é = @ for
all @ € Cé?o(Fz)‘ Due to [1, Corollary 4.8], there exists a rational function y (s, 7, ¥'r, ¥g)
in ¢~2¥ which satisfies

v, T YE, YE)Z(s, W, ®) = Z(1 —s, W, D).
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We define the e-factor (s, w, ¥, YE) of w by
L(s,m)
L —s,7)

where 77 denotes the representation contragradient to 7. By [11, Proposition 3.13], we have
L(s,7) = L(s, ), and hence

e(s, m, Yp, YEg) =y (s, m, YF, YE)

_ L(s, )
e(s, m, Yp, Yg) =y (s, m, ¥, wE)L 2.2)

(1—s,m)
For e-factors, the following holds:

Proposition 2.3 [11, Proposition 3.15] The e-factor e(s, @, Y, W) is a monomial in qus

which has the form
e(s, 7T, Y. YE) = g 20712,

for some n € Z.

3 Newforms and L-factors

In Sect. 3.1, we recall from [12] the notion of conductors and newforms for generic repre-
sentations 7 of G. In Sect. 3.2, we prove our two main theorems assuming Lemma 3.5. We
show that a newform for 7 attains the L-factor of = through Gelbart and Piatetski-Shapiro’s
integral (Theorem 3.6 (i)). Moreover we obtain the coincidence of the conductor of 7 and
the exponent of q_zs of the e-factor of = (Theorem 3.6 (ii)). Lemma 3.5 will be proved in
Sect. 6.

3.1 Newforms

For a non-negative integer n, we define an open compact subgroup K, of G by

o 0  bg"
Ky= |9y 1+pg o |NG.
P Py ok
For an irreducible generic representation (7, V) of G, we set

Viny={veV|nky=v ke K,}, n>0.

We say that an element v in V is of level n if v lies in V (n). By [12, Theorem 2.8], there
exists a non-negative integer n such that V (n) is not zero.

Definition 3.1 Let (;r, V) be an irreducible generic representation of G. We call the integer
N = min{n > 0| V(n) # {0}} the conductor of = and elements in V (N ) newforms for .

In [10], we gave an explicit formula for dim V (n), n > Ny . In particular, the following
holds.

Theorem 3.2 [10, Corollary 5.2] For any irreducible generic representation (xw, V) of G,
we have

dim V(Ny) = dim V(N + 1) = 1.
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Remark 3.3 Suppose that (77, V) is an irreducible generic representation of G. Then Zy,_
acts on V(Ny) trivially. This implies N; > n . The relation between N, and n, is crucial
for the computation of zeta integrals of newforms in [11].

Itfollows from [12, Theorem 5.6] that the space V (N ) is one-dimensional. We shall relate
newforms with Gelbart and Piatetski-Shapiro’s integral. For W € W(r, ¥g), we define the
zeta integral Z(s, W) of W by

Z(s, W) =/ W(t(a))laly 'd*a.
E><

Here we normalize the Haar measure d*a on E* so that the volume of 0%5 is one. One can
show that the integral Z (s, W) absolutely converges to a function in C(¢ ~~*) when Re(s) is
enough large, along the lines of the theory of zeta integrals for GL(2) by using [1, Proposition
3.3].

For each integer n, let @,, be the characteristic function of p’}; @or.Wedenoteby LE (s, x)
the L-factor of a quasi-character y of E*, that is,

1

Le(s. ) =1 1 — x(@)g=*
1, if x is ramified.

, if x is unramified;

We write 1 for the trivial character of E*. One important property of our compact subgroups
{Kn}n>0 is that K, N H is a maximal compact subgroup of H for any n > 0. So we obtain
an Iwasawa decomposition H = Uy Ty (K, N H). By using this decomposition, we get the
following:

Proposition 3.4 [11, Proposition 3.5] Let n be any non-negative integer. Suppose that a
Sfunction W in W(m, ¥g) is fixed by K,,. Then we have

Z(s,W,D,) =Z(s, W)Lg(s, 1).

If the conductor of ¥ is o, then it follows from [10, Proposition 5.1] that any non-zero
element v € V(N ) satisfies W, (e) # 0. Due to Theorem 3.2, there exists a unique newform
v for m such that W, (e) = 1. We state the key lemma which will be proved in Sect. 6.

Lemma 3.5 Suppose that the conductor of Y is og. Let v be the element in V (N5 ) which
satisfies Wy (e) = 1. Then we have

Z(s, Wy, @n,) = L(s, ) or L(s,m)/LE(s, 1).

In the following theorem, we will show that the latter (Z (s, W, @y, ) = L(s, w)/LE(s, 1))
is never the case, that is, the zeta integral of the newform attains the L-factor.

3.2 The main theorem

We shall prove our main theorem, which is an analog of Theorem 1.1.

Theorem 3.6 We fix an additive character Vg of E with conductor og. For any irreducible
generic representation w of G, we have the followings:

(1) Let v be the element in V(N5 ) such that Wy(e) = 1. Then we have
Z(s, Wy, @y, ) = L(s, ).
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(i) If ¥r has conductor of, then we have
e(s, 7, Yr, Yp) = g MO,

Proof By Lemma 3.5, wehave Z(s, W,, @y, ) = L(s, w)or L(s, w)/LEg (s, 1). Suppose that
Z(s, Wy, @n,) = L(s,m)/LE(s, 1). Take an additive character ¥ of F' whose conductor
is or. Then, by [11, Proposition 3.9], we get

Z( =5, Wy, dy,) = q 2NV Z(0 -5, W, dp,),
and hence
Z( — s, Wy, D) = q 2N VD LA -5, ) /L — 5, 1)

by assumption. Due to (2.2), we obtain

Z(1—s, Wy, Pn,) Z(s, Wy, Dn,)
Ld —s. ) =e(s, 7, YF, WE)*L(S’ e
so that
ONgs-1y L R
1 Le(—s. ) SGmVrVE 0y

This implies that e(s, , ¥F, Yg) is not a monomial in q_zs , which contradicts Proposi-

tion 2.3. Therefore we conclude that Z(s, W,, @5,) = L(s, ). This implies (i). Now the
assertion (ii) follows from [11, Theorem 4.3]. O

4 An estimation of L-factors

The remaining of this paper is devoted to the proof of Lemma 3.5. In this section, we roughly
estimate the L-factors of generic representations of G. To state our result, we fix the notation
for parabolically induced representations. For a quasi-character w1 of E* and a character u;
of E!', we define a quasi-character 4 = 1 ® up of T by

a
m b = pi(a)pua(b), forae EXandb e E'.

We regard p as a quasi-character of B which is trivial on U. Let Indg (u) denote the nor-

malized parabolic induction. Then the space of Indg () is that of locally constant functions
f : G — C which satisfy

f(bg) = 8(b)'*u(b) f(g), forbeB, geG,
where §p is the modulus character of B. Note that

a
S b =lal%, forae E*andbe E'.
=
The group G acts on the space of Indg (u) by the right translation.
Let (7, V) be an irreducible generic representation of G. To study the integral Z(s, W)
of W € W(m, Yg), we recall from [12, section 4.2] some properties of the restriction of
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Whittaker functions to Ty. Let W be a function in W(rr, ¥ g). Under the identification
Ty >~ E*, the restriction W|z, of W to Ty is a locally constant function on E*, and there
exists an integer n such that supp Wi, C p%. Weset V(U) = (m(w)v—v|v eV, u e U).
Then for any element v in V(U), the function W, |7, lies in CZ°(E™).

The next lemma follows along the lines in the theory of zeta integrals for GL(2). However
we give a proof for the reader’s convenience. In the below, we denote by 7¢; the quasi-character
of E* defined by iy(a) = p1(a),a € E*.

Lemma 4.1 Let w be an irreducible generic representation of G and W a function in
W(r, Y ).
() Suppose that 7 is supercuspidal. Then Z(s, W) lies in C[qg~>*, ¢*].
(ii) Suppose that v is a proper submodule of Indg (11 ® n2), for some 1 and . Then
Z(s, W) belongs to LE (s, ,ul)C[q’Q‘Y, qz“].
(iii) Suppose that w1 = Indg (11 ® up), for some 1 and po. Then the integral Z(s, W) lies
in L (s, p0)LE(s, 7y DClg™, g1

Proof Let Vy = V/V (U) be the normalized Jacquet module of 7. The group T acts on Vy
by 8;1/ 7.
(i) If r is supercuspidal, then we have Vi = {0}. Since W is associated to an element in
V = V(U), the function W|7, lies in CZ°(E*), and hence Z (s, W) belongs to C[q_zs, qzs].
(i1) In this case, Vy is isomorphic to @1 ® wo as T-module. Take v € V such that
W = W,.If v lies in V (U), then by the proof of (i), C[q’zs, qzs] contains Z(s, W), so does
LEg(s, Ml)C[q_zs, qzs]. Suppose that v does not belong to V (U). Since Vy is isomorphic to

1 as Ty-module, we see that the element Sgl/z(t(a))rr(t (a))v — pui(a)v lies in V(U) for

any a € EX. Set v/ = 85"/ (t(a))7(t(a))v — p1(a)v. One can observe that Z(s, W) =
(lalz* — pi@)Z(s, Wy). So (lalz* — u1(a)) Z(s, Wy) lies in C[g >, g* ] foralla € E*.

Suppose that g1 is ramified. Then we can find a € 02 such that pj(a) # 1. Thus,
we see that (1 — wy(a))Z(s, Wy) lies in C[q_zs, qz‘y]. If p is unramified, then we have
(g% — u1 (@) Z(s, Wy) € Clg~%, ¢*] by putting a = w. These imply that Z(s, W,) lies
in Lg(s, p,l)C[q’zs, qzs], as required.

(iii) In the case when m = Indg (1 ® uy), there is a T-submodule Vi of Vi such that
Vu/Vi =~ pu1 ® up and Vp =~ ﬁl_l ® 2. Then we can easily show the assertion by repeating
the argument in the proof of (ii) twice. O

According to the classification of representations of G, we obtain the following estimation
of L-factors:

Proposition 4.2 Let 7w be an irreducible generic representation of G.
(1) Suppose that v is supercuspidal. Then Lg(s, 1) divides L(s, ), that is, L(s, t)LEg
(s, D)7 lies in C[q_Qs, qzs].
(ii) Suppose that v is a proper submodule of Indg (n1 ® wa), for some 1 and . Then
Lg(s, u1)LEg(s, 1) divides L(s, ).
(iii) Suppose that m = Indg(ul ® W2), for some w1 and py. Then L(s, ) is divided by
Le(s, p)Le(s, 78y DLEs, D).

Proof Let W and @ be functions in W(rr, ¥g) and C2°(F 2) respectively. Note that W (h)
and f (s, h, @) are right smooth functions on H. So the integral Z(s, W, @) can be written as
a linear combination of Z (s, W') f (s, e, @'), where W' € W(r, ¥g) and @' € C°(F?). By
the theory of zeta integrals for GL(1), we see that f (s, e, @') lies in Lg(s, DClg~%, ¢*].
So the assertion follows from Lemma 4.1. O
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5 Zeta integrals of newforms

The proof of Lemma 3.5 will be done by comparing zeta integrals of newforms with Propo-
sition 4.2. To this end, we give a formula for zeta integrals of newforms in this section.
Let (7, V) be an irreducible generic representation of G. If N is zero, then Gelbart and
Piatetski-Shapiro in [7] computed zeta integrals of newforms by using Casselman—Shalika’s
formula for the spherical Whittaker functions in [4]. So we treat only representations with
Ny > 0 here. In this case, we will follow the method by Roberts and Schmidt for GSp(4).
In [15, section 7.4], they give a formula for zeta integrals of newforms for representations
of PGSp(4) with N, > 2, in two Hecke eigenvalues. For U(2, 1), we need two eigenvalues
to describe zeta integrals of newforms. But we have only one nice Hecke operator. The key
in our computation is to consider the spaces V (N;) and V (N, + 1) simultaneously, which
are both one-dimensional. In Sect. 5.1, we recall the definition of the level raising operator
0’ : V(Ny) — V(N + 1). The first eigenvalue v is defined in Sect. 5.2 as that of the Hecke
operator T on V(N + 1). The second one A is introduced in Sect. 5.3 as the eigenvalue of
the composite map of 6" and the level lowering operator § : V(N + 1) — V(Ny). Recall
that we need the condition n > n, to describe the level lowering operator § on V (n) (see
[11, Lemma 5.9]). Since we always have N; 4+ 1 > n, by Remark 3.3, we can calculate the
operator § on V(N 4 1). In Sect. 5.4, we describe zeta integrals of newforms explicitly with
v and A (Theorem 5.10).

5.1 The level raising operator 6’

From now on, we assume that the conductor of g is og. Let (7, V) be an irreducible
generic representation of G whose conductor N is positive. We abbreviate N = N. Let 6’
denote the level raising operator from V (N) to V(N + 1) defined in [12, section 3]. By [12,
Proposition 3.3], we have

Ov=n v+ Y w@O.x)v. veVN), (5.1)
—1-N ,, —N
XEP R /PE
where
w
¢ = 1

We fix a newform v in V (N), and set
ci = Wo@), di = Wy (),
fori € Z.
Lemma 5.2 Fori € Z, we have d; = ci—1 + qc;.

Proof By (5.1), we obtain

Worn (6 =Wy 0D+ Y Wu@'u(0.x)).

xep;"N/p;N

for i € Z. Since ¢'u(©,) = u(0.@*x)¢" and Yr@O, @*x) = 1, we obtain
Wv(gl”(ovx)) = Wy(;l), and hence
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Wory (1) = Wy(2'™1) + g Wy (2.

This implies the lemma. O

5.2 The eigenvalue v

Let T denote the Hecke operator on V(N + 1) defined in [11, subsection 5.1]. For w €
V(N + 1), we have
1
w = m(g)wdg = Z w(k$w.

(K
vol(Rw) Jxweky keK/KnOcKye-!
By Theorem 3.2, the space V(N + 1) is one-dimensional. So there exists a complex number
v, which is called the Hecke eigenvalue of T, such that
Tw= vw

forallw € V(N 4 1). Forw € V(N + 1), we set

w= ) > r@y.))w. (5.3)

vepy/py T zep /ot

For eachi € Z, we put
dj = Wigryy ().
Then we have the following
Lemma 5.4 Fori > 0, we have vd; = d]_, + g*diy.
Proof By [11, Lemma 5.4], we obtain
vy =TOv = HOV + Y = wua b))'v. (5.5)

acogp/yE
bepz! N /plN

Thus, we get
VW (@) = Wiy @+ Y W (&ula, b)o),

aspelPE_y
bepp " /pp

fori > 0. Note that ¢'u(a, b) = u(w'a, w*'b)¢" and Y (u(w'a, w?b)) = Ye(w'a) = 1
because a € of and £ has conductor og. Hence we have Wy, (¢ u(a, b)) = Wgrv(;""l),
and hence

VWary (€)= Wigroy (677 + ¢* Wary (¢,

This completes the proof. O

5.3 The eigenvalue A

The central character w, of 7 is trivial on Zy = Z N K. Since the group Zy K y+1 acts on
V(N + 1) trivially, we can define the level lowering operator § : V(N + 1) — V(N) by

1
= m(k)wdk = w(k)w,
vol(Ky N (ZnKn+1)) Jky keKN/K%ZNKNH)
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for w € V(N + 1). Theorem 3.2 implies that V (N) is of dimension one. So there exists a
complex number A such that

rv =86"v
forallv € V(N).
Lemma 5.6 We have
d +q*diyy = rej, i >0,
d ; =0.

Proof Since N is positive and wy is trivial on Zy, wehave N +1 >2and N + 1 > ny. So
we can apply [11, Lemma 5.9], and get

v =80"v = (0'v) + Z 7 (Cu(y, 0))6'v. (5.7)
yepz'/ok
Hence we obtain
AW (@) =Wy @)+ Y Worn (@ u(y, 0)),
yepgz' /o

for i € Z. Because Mt u(y, 0) = u(w‘i+1y7 O)Cifl and Vg (@i tly, 0) = vp(@i*ly),
we have Wy, (07 u(y, 0)) = Y (@ y) W, (7). So we get

AW (@) =Wy @)+ Y Ye@ )W (0.
yepy'/ok

If i > 0, then we have Yz (w't!y) = 1 because w'*!y € o and ¥ has conductor of. So
we have

AW, (&) = Wiy (¢1) + ¢* War, ().

This implies Ac; = d{ + qzd,-+1, fori > 0.
Ifi = —1 thenwehave 3 1/, ¥£(y) =0, and hence AWu (™ = Wy (6 71).

Due to [12, Corollary 4.6], we get Wu(g“_l) = 0. So we obtain W(gzv)/(;‘l) = 0. This
implies d’ | = 0. O

5.4 Zeta integrals of newforms in v and A
We get the following recursion formula for ¢; = W, hH,i > 0.
Lemma 5.8 We have

W+qg>=Nei+qw+q> —gP i1 = ¢cipa, i >0,
(v— QS)CO = q461.

Proof The assertion follows from Lemmas 5.2, 5.4 and 5.6. For the second equation, we note
that c_; = Wy(¢™ ") is equal to zero because of [12, Corollary 4.6]. O

By Lemma 5.8, we get the following formula of zeta integrals of newforms.
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Proposition 5.9 Let (r, V) be an irreducible generic representation of G whose conductor
Ny is positive. For any v € V(Ny), we have

(1= g~>)Wu(o)
L—+q>—g)q 2> —+q> =g g’
Proof For v € V(Ny), it follows from [12, Corollary 4.6] that supp W,|7,, C og. Since
Wylry is 0 -invariant, we obtain

Z(s, Wy) =

& )
Z(s, W) = Z WU(C')IW'ISE_I _ Zciqzl(lﬂ)'
i=0 i=0

Puta = (V4 ¢ —¢3)g * and B = (v + g> — 1)g . Then by Lemma 5.8, we have
Cit2 = aciy1 + Bei, i = 0.
So we obtain

[e.¢]
Z(s, W) = co+c1¢”> + ) _(acipr + Bep)g” I
i=0

= ¢ + clq2—2s + ﬂq4—4s iciq%(lfs) + an—Zs iciqb‘(lfs) _ 0lchZst
i=0 i=0
=co+ 14”7 + Bg TV Z(s W) + aq? T Z(s, W) — acoq®
=co+ (e —aco)g” > + (@g® > + Bg* ) Z (s, W).
Thus we have

co + (c1 — aco)g>™%

Z(s, Wy) = | —aq? 2 — g+
B co(l —q=*)
1—(+q?—q¥g72g7% —(v+¢? =g~ g™
In the last equality, we use the equation ¢ —aco = —g ~2co from Lemma 5.8. Now the proof
is complete. o

Theorem 5.10 We assume that g has conductor og. Let (1w, V) be an irreducible generic
representation of G whose conductor Ny is positive. For the newform v in V (Ny) which
satisfies Wy (e) = 1, we have

1
Z(s, Wy, @y,) = ’
(s, Wy, @n,,) 1—(W+q2—¢3)q2q7 % —(v+qg>— g~ g™

where v is the eigenvalue of the Hecke operator T on V (N + 1) and X is that of the operator
86’ on V(Ny).

Proof The theorem follows from Propositions 3.4 and 5.9. O

6 Proof of Lemma 3.5

In this section, we prove Lemma 3.5. An irreducible generic representation 7z of G is either
supercuspidal or a submodule of Indg (n1 ® wa), for some 1 and po. We distinguish the
cases according to the form of L-factors:
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(I) m is an unramified principal series representation, that is, 7 = Indg (1 ® w2), where
w1 is unramified and w5 is trivial (Sect. 6.1);
(I) = is a supercuspidal representation (Sect. 6.2);
(IIT) 7 is a submodule of Indg (1 ® u2), where 1 is ramified (Sect. 6.3);
(IV) 7 is a submodule of Indg (1 ® u2), where w1 is unramified, but 7 is not an unramified
principal series representation (Sect. 6.5).

Remark 6.1 We remark that representations in cases (II)~(IV) have positive conductors. If
7 is generic and supercuspidal, then by [12, Corollary 5.5], we have N > 2. Conductors of
the non-supercuspidal representations are determined in [10]. By the proof of Proposition 5.1
in [10], if 7 is non-supercuspidal and generic, then N; = 0 implies that 7 is an unramified
principal series representation. In particular, the representations in case (IV) are just the
irreducible generic subrepresentations of Indg (1 ® o) with positive conductors, where 41
runs over the unramified quasi-characters of E*.

6.1 Proof of Lemma 3.5: Case (I)

Let 1 be an unramified quasi-character of E* and u5 the trivial character of E'. Suppose
that w = Indg(p,l ® pp) is irreducible. We show that Lemma 3.5 holds for . In this case,
7 has a non-zero Ky-fixed vector. This implies N, = 0. Let V denote the space of 7 and let
v be the element in V (0) which satisfies W, (e) = 1. By [7, (4.7)], we obtain

Z(s, Wy, ®0) = Lg(s, p1)Le(s, 7y DLE(s, D).
because 1t; = 1. Due to Proposition 4.2 (iii), we have
Z(s, Wy, @9) = L(s, ) = Lg(s, p)Le(s. i; HLE(s, 1), (6.2)

which completes the proof of Lemma 3.5 in this case.

6.2 Proof of Lemma 3.5: Case (I)

Let (7, V) be an irreducible generic supercuspidal representation of G. We show the valid-
ity of Lemma 3.5 for 7. In this case, we have L(s, 7) = 1 or Lg(s, 1) by Proposition 4.2
(i). Let v be the element in V (N, ) which satisfies W, (¢) = 1. Then it follows from Theo-
rem 5.10 that Z(s, W,, @y, ) has the form 1/P(q_2s), for some P(X) € C[X]. Note that
Z(s, Wy, @y, )/L(s, ) liesin C[q’zs, qz‘?] by the definition of L(s, 7). So one may observe
that Z(s, W,, ®y,) = L(s, ) or L(s, m)LE(s, 1L as required.

6.3 Proof of Lemma 3.5: Case (III)

Suppose that an irreducible generic representation (7, V) of G is a submodule of Indg(ul ®
u2), where ju1 is a ramified quasi-character of E*. In this case, we have L(s,7) = 1 or
LE (s, 1) by Proposition 4.2 (ii) and (iii) because Lg(s, u1) = Lg(s, ﬁl_l) = 1. Thus we
can show that Lemma 3.5 is valid for 7 as in Sect. 6.2.

6.4 Eigenvalues v and A

To prove Lemma 3.5 for representations in case (IV), we need more information on the
eigenvalues v and A defined in Sect. 5. Suppose that an irreducible generic representation
(7, V) of G is a submodule of Indg (u1 ® u2), where pq is an unramified quasi-character
of E*. We assume that N, is positive.
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Remark 6.3 We identify the center Z of G with E'. In the case when 1 is unramified, the
representation Ind(B; (1 ® w2) admits the central character w,; = w», so does 7. Since 7 has
anon-zero K y_-fixed vector, w; = iy is trivial on Zy, = E'n 1+ pE)N".

We may regard an element in V' as a function in Indg (1 ® wo). It follows from [10,
Corollary 4.3] that every non-zero element f in V(N ) satisfies f(e) # 0. By using this
property of newforms, we show a relation between v and A. We abbreviate N = N;.

Lemma 6.4 For f € V(N), we have
©'f)©) = @ @) +9)f(@.
In particular, (0’ f)(e) # 0 for all non-zero f € V(N).

Proof By (5.1), we have

@NHEe=recH+ > fo.x).

xep =N jpi

Since f belongs to Ind§ (11 ® p2), we obtain f(¢~!) = 8;3/2(;“*1)“1(@;*1)]‘(53) =
qz,ul(w)_lf(e) and f(u(0,x)) = f(e). So we have

O f(e) = ¢ (@)~ fle) +qfe) = (*ri(@) " +q) fe),

as required. For the second assertion, it suffices to claim that g2 (@)~! + g # 0. Since
/1 is unramified, if qzu,](w)*1 + g = 0, then we have p||px = wg/F| - |;1, where wg/r
is the non-trivial character of F* which is trivial on Ng,r(E>). If this is the case, then
it follows from [9] that Indg (11 ® up) is reducible, and it contains no irreducible generic
subrepresentations (see [10, Lemma 3.6] for instance). This contradicts the assumption that
Indg (u1 ® up) contains 7. O

We obtain the following relation between v and A:

Lemma 6.5 We have A = (v + g% — ¢*u1(@)(1 + g~ 1 (o).

Proof For f € V(N),weput (@' f) = Zyepz/pll;{+l Zzeplly/pﬁ{ﬂ 7w (i(y, z))0 f asin (5.3).
Then by (5.5), we obtain

(' f)e)= O ¢+ Z O f)(ula, b)t).
a€oE/PE
bepyl N /ploN
Since we regard 6’ f and (0’ f)’ as functions in Indg(ul ® u2), we have
@ N'¢H =l @ HE € =’ m@ HE' 1) o
and
O fw(a,b)t) = o |pu (@)O f)le) = g > 1 (@) (O f)(e).

So we get

(@' &) = g* 1@ O ) () + q*u1 (@)@ f)ie). (6.6)
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On the other hand, by (5.7), we obtain
ME@=0H @+ > 0 Hu.0).
yepp'/ok

and get

Af(e) = (0" f) (e) + m1 (@) (O f)(e) (6.7)
in a similar fashion. By (6.6) and (6.7), we have

V(0 )(©) = g* 1@ H(Gf (€) = w1 (@) (0 )(©) + ¢ 11 (@) (@' (o).
According to Lemma 6.4, we obtain
v+ — @)@ (@) +9) f(©) = g i@ Hrf ().

If f € V(N) is not zero, then we get f(e) # 0. So this completes the proof. O

By Lemma 6.5, we get a formula for zeta integrals of newforms with only v.

Proposition 6.8 We fix a non-trivial additive character g of E whose conductor is og.
Let (7, V) be an irreducible generic representation of G whose conductor Ny is positive
and v the newform for w such that Wy(e) = 1. Suppose that w is a subrepresentation of
Indg (1 ® w2), where 1 is an unramified quasi-character of E*. Then we have

1
1—(w+4¢?>—q¢° = ¢*>m(@)qg=2q

Z(s, Wy, ®n,) = Li(s, 1) —

Proof By Lemma 6.5, we get
r=v—"=0+q — ¢ — @) (@),

and hence

2 4s

1= (v+q*—qHq7 %" —(v+q¢*—Mqg g
=0 -0+¢* =3¢ = Pm@)g 272 = pi(@)g™>).

So the assertion follows from Theorem 5.10. O

We shall describe the Hecke eigenvalue v by values of a function f in V(N ). Recall that
v is the eigenvalue of the Hecke operator 7 on V (N, + 1). We abbreviate N = N . One has

vg=Tg= > 7 (kE)v,
keKny1/Knp1NEKygprt~!

for g € V(N + 1). For any integer i, we set

1 w
vi = i(@',0) = w! 1 and ; = 1
—w —wl 1 w!

We note that if n > 0, then 7, lies in K,,. Recall that Lemma 5.2 in [11] gave a complete set
of representatives for Ky41/Ky41 N {KNH{_I. Thus we obtain

ve= Y wnwu(,00g+ Y. wua bi)g.
YEOE/PE acop/pE
e /pp bepp! N /pp N
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Because fy1u(y, 2)Ctne1 = ¢ (- Ny, @V z), we get

vg=m@") Y w@y.eg+ Y,  wu big. (6.9)

N N+1
YPE/VE be a*E‘O’EN//pE'*N
zepl/pht P /PF

See Lemma 5.4 in [11] for details. The following lemma describes v by the values of a
function g in V(N5 4 1) ate and py, .

Lemma 6.10 For g € V(N + 1), we have
vg(e) = (¢* (w1 (@) + w1 (@) ) + ¢’ — gHgle) + ¢*(g*> — D1 (@) ' g(y),
where y = yn,.
Proof We abbreviate N = N;. By (6.9), we have
vg@)= Y g la.a)+ Y @ b))

yepg/pg“ acop/PE

—1-N ; 1-N
zepfr’/pl}lﬂ bepy "V /pp
Since we regard g as an element in Indg (1 ® up), we have

gy, 2) = lo | (@) gy, 2)) = ¢ i (@) g @y, 2))

and

g(u(a, b)) = g(¢) = |@|pp1(@)gle) = ¢ > p1(@)g(e).
Thus, we get

vgle) =g’ m@)™ Y 2@y, ) + g i (@)g(e).
yep¥ /pit!
zepf /pit!

To prove the assertion, it is enough to claim that (i) g(ii(y,2)) = g(y), for y ¢ ph+!,

z e pN T and (i) g(@(y, 2)) = ¢ 211 (@)g(e) for z ¢ pN . Actually, we obtain

vg(e) = ¢*u1(@) N (ge) + (g% — Dg(y) + g 1 (@)g*(q — Dg(e) + g* i (@)g(e)
= (> (@) + (@) H +¢> —gHgle) + > (@* — D (@) 'g(y),

as required.
We shall show the claim. (i) Suppose that y ¢ pgﬂ and z € ng. Then there exists
a € o} such that 1 (@)ii(y, 0)t(a)~! = di(w ™, 0) = y. Since g is fixed by Ky 1, we have

g(i(y, 2) = gy, 0) = g(t (@)~ 'yt(@) = gt(@)~'y).

Because we assume that ; is unramified, we get g(i(y, z)) = m(a‘l)g(y) =g(y).
(i) If z ¢ p¥ ™', then the element x = z./€ — y¥/2 lies in p¥ \p¥ ™'. Using the notation
in Sect. 2.1, we write u(y, z) = a(y, x). Then we have

N+1/

a(y, x) = u(=y/x, 1/x)diag(z X, —x/x, VN0t u(=y/x, 1/x).

One can observe thatfy+ju(—y/x, 1/x) liesin K y41. Since g is an element in Indg (L1 ®u2)
fixed by Kn41, we have

g(i(y, 2)) = g(i(y, x)) = g(diag(w ™ /x, —x/x, @~ "N x)).
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The assumption x € pY\p¥T™! implies ¥ *1/% € wo}, so we get gli(y,2) =
q_zul(w),uz(—f/x)g(e). Note that x + X + yy = 0, and hence —x/x = 1 + yy/x.

Since y € pg and x € pg\pgﬂ, we obtain —x/x € 1 + p%’. Thus, by Remark 6.3, we see
that pa(—X/x) = 1, so that g(ii(y, 2)) = g~ 1 (@) g(e). o

Applying Lemma 6.10 to g = 0’ f, where f € V(Ny), we get the following
Lemma 6.11 For any non-zero element f in V(Ny), we have
v=¢ (@) +m@) ) +¢’ - ¢*
+¢*@* — D@~ @ u@) " + )7 O N f ),
where y = yn,.

Proof Putg =0'f € V(N +1). By Lemma 6.4, we have g(e) = (¢%u1 ()" +q) f(e) #
0. So the assertion follows from Lemma 6.10. O

We apply Lemma 6.11 to zeta integrals of newforms.

Proposition 6.12 Under the same assumption of Proposition 6.8, we have

1
Z(s, Wy, @n, ) = LE(s, p1) ———--
1 —ag

Here « is given by

a=m@) " +ui@) N g* = D@ @) + )7 O Hivw,)/fe),

for any non-zero function f in V(Ny).
Proof The proposition follows from Proposition 6.8 and Lemma 6.11. O

6.5 Proof of Lemma 3.5: Case (IV)

We shall finish the proof of Lemma 3.5. The remaining representations are those in case (IV).
Let (7, V) be an irreducible generic representation of G whose conductor is positive. We
suppose that 7 is a subrepresentation of Indg(ul ® w2), where w1 is unramified.

Firstly, we assume that 7 is a proper submodule of Indg (11 ® n2). Then Proposition 4.2
(ii) implies that L(s, ) = Lg(s, u1) or Lg(s, 1) LE(s, 1). Let v be the newform in V (N )
such that Wy (e) = 1. It follows from Proposition 6.12 that Z(s, W,, @y_) has the form
Lg(s, 1) - (l/P(q*Z‘T)), for some P(X) € C[X]. Because Z(s, W, @y, )/L(s, ) lies in
Clg~%, ¢*], we must have Z (s, W,, @y, ) = L(s, ) or L(s, 7)/LE(s, 1).

Secondly, we consider the case whenw = Indg (n1®u2). The assumption N, > Oimplies
that 147 is not trivial. In this case, we can show Lemma 3.5 by comparing Proposition 4.2 (iii)
with the following one in a similar fashion:

Proposition 6.13 Let | be an unramified quasi-character of E* and py a non-trivial
character ofE]. Suppose that 1 = Indg (1 ® o) is irreducible. Then we have

Z(s, Wy, ®n,) = L(s, p1)LEG, Ty ),

where v is the newform in V (Ny) such that Wy (e) = 1.
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Proof Set y = yn,. Since u1 is unramified, we have 1t = pi. By Proposition 6.12, it
enough to show that 8’ f (y) = 0, for any functions f in V(N ). By [10, Theorem 2.4 (ii)],
the space of Ky, 41-fixed vectors in Indg (1 ® w2) is one-dimensional and consists of the
functions whose supports are contained in BKy_ 4| since we assume that 1 is unramified.
Due to [10, Lemma 2.1], the sets By K, +1 and BKy, 11 = Byn,+1Kn,+1 are disjoint. So
forany f € V(Ny), we get (0" f)(y) = 0 because 6’ f is fixed by K, 1. This completes
the proof. O

Now the proof of Lemma 3.5 is complete.

7 An example of a computation of L-factors

Let (7, V) be an irreducible generic representation of G whose conductor N, is positive.
Suppose that 7 is a subrepresentation of Indg (11 ® w2), where p1 is an unramified quasi-
character of E* and u; is a character of E ! Tn this section, we determine the L-factor of 7
by using the results in Sect. 6.4.

7.1 Irreducible case

Suppose that Indg (1 ® wp) is irreducible. Then we have w = Indg (1 ® up) and wy is
not trivial because we assume that N, > 0.

Proposition 7.1 Let 1 be an unramified quasi-character of E* and py a non-trivial char-
acter of E'. Suppose that m = Indg (1 ® wo) is irreducible. Then we have

L(s,m) = Lg(s, u)LE(s, 717 1),
Proof Theorem 3.6 and Proposition 6.13 imply the assertion. O

7.2 Reducible case

Suppose that Indg (1 ® ) is reducible. Recall that we assume that Indg (1 ® u2) contains
an irreducible generic subrepresentation 7. So, by [9], there are the following three cases:

(RU1) w1 = |- |g and py is trivial: Then 7 is the Steinberg representation Stg of G and
Ny =2 by [10, Proposition 3.4 (i)]. (Proposition 7.6).

(RU2) pilpx = wg/r| - |F, where wg,r denotes the non-trivial character of F* which
is trivial on Ng,p(E™). By [10, Proposition 3.7 (i)], we have N = c(u2) + 1.
(Propositions 7.5 and 7.6).

(RU3) p is trivial and oy is not trivial: Then due to [10, Proposition 3.8 (i)], we get
Ny = c(u2). (Proposition 7.2).

Here c(u7) denotes the conductor of w5, that is,
c(u2) = minfn = 0] w2l pin(ipyy = 1)-

We fix a non-trivial additive character g of E with conductor og. Let v be the newform
for 7 such that W, (e) = 1. Then by Theorem 3.6, we have Z(s, W,, ®n_) = L(s, 7). We
regard elements in V as functions in Indg (n1 ® ma). By Proposition 6.12, to determine
L(s, ) = Z(s, Wy, @y, ), itis enough to compute (6" f)(yn,)/f (), where f is a non-zero
function in V (N, ). We shall determine (6’ f)(yw,, )/f (e) explicitly, for each case.
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7.3 Case (RU3)

We consider the case (RU3).

Proposition 7.2 Let uy be a non-trivial character of E' and (7w, V) the irreducible generic
subrepresentation of Indg (1 ® w2). Then we have

L(s,m) = Lg(s, 1)2.

Proof 1t follows from [10, Proposition 3.8] that V (n) coincides with the space of K, -fixed
vectors in Indg (1 ® up) for all n. So we may apply the argument in the proof of Propo-
sition 6.13, and get (0" f)(yn,) = 0, for any f € V(N). By Proposition 6.12, we obtain
Z(s, Wy, ®Pn,) = LE(s, 1)2, where v is the newform in V (N ) such that W, (e) = 1. The
assertion follows from this and Theorem 3.6. m]

7.4 Case (RU2-I)

Let us consider the case (RU2). We further assume that p, is trivial. The remaining case
is treated in the next subsection. Then Indg(ul ® u2) has the trivial central character, so
does 7. By [10, Proposition 3.7 (i)], we get N; = 1. Since u1|px = wg/r| - |F, we have
pi(@) =—q~".

Lemma 7.3 For f € V(1), we have
O Hy) =@+ 1 f(e).

Proof We abbreviate y = y|.Setg =6’ f € V(2)and y’ = ryty = u(—w !, 0). We have
y = ty'ts = ¢~ '11y1. Since g is a function in Ind% ; ® wo which is fixed by K> and
1 € Ko, we obtain g(y) = g(¢ " 't1y't) = ¢* (@~ DHg(t1y’). By (5.1), we get

gmy)=fay'cH+ Y fay'u©,x),
xeppl/py
and hence
e =@ Y'Y +@Pm@™) Y fayu©,x). (4
xepp?/py!

Firstly, we get t1y'¢ ' =11¢7 ¢y’ 7! Note that ;2! = ¢ty and ¢y'c ! = u(—1,0).
We get tly’;‘_l = ¢hu(—1,0). Since tju(—1,0) € K and f € V(1), we obtain

fy'c™ = fEnu(=1,00) = f(&) = g 2u1(@) f(e).

Secondly, we gett1y'u(0, x) = tju(—w ', x) = ai(1, @w?x)t;. Sincet; € Kyand f € V(1),
we obtain

Fty'u(0,x) = @, a’on) = f@ad, @>x)).

Set z = w2xy/e — 1/2. Then 7 lies in OE because w?x € p%. With the notation in Sect. 2.1,

we write (1, w2x) = 0(l, z). We use the relation

u(l,z) =u(—-1/z, 1/z)diag(w /z, —7/z, w_lz)tlu(—l/z, 1/z2).

@ Springer



On L-factors attached to generic representations. . . 1401

Byz e OE, we have tju(—1/z,1/z) € Kj. Recall that f is a function in (Indgm Q 12)
which is fixed by K. So we obtain

f@y'u(0,x) = fdiag(w/z, —7/z, @ ~'2) = ¢ i (@) f (e)

because z lies in o) and we assume that uy is trivial. Finally, by (7.4), we get g(y) =
(g + 1) f(e), as required. G

Proposition 7.5 Let (1| be an unramified quasi-character of E* which satisfies jL1|px =
wg/F|-|F, and jy the trivial character of E L. For the irreducible generic subrepresentation
b4 OfIndg (1 ® u2), we have

L(s,m) = Lg(s,u1)LEg(s, 1).

Proof We may apply Proposition 6.12. Due to Lemma 7.3, the number « in Proposition 6.12
satisfies

o=@ '+ @) G- D@Pm@) T+ g+ D =1,
since 1 () = —g~!. Now the assertion follows from Theorem 3.6 and Proposition 6.12. O

7.5 Cases (RU1) and (RU2-II)

Suppose that an irreducible generic representation 7w of G is a subrepresentation of Indg (111 ®
2). We assume that w1 and p; satisfy one of the following conditions:

(1) w1 = |- |k and g is trivial;
(2) w1 is an unramified quasi-character of E* such that j1|px = wg/rl - |F, and us is a
non-trivial character of E1.

In the first case, we have N; = 2 by [10, Proposition 3.4] (i), and 7 has the trivial central
character. In the second case, we get N; = c(u2) + 1 > 2 by [10, Proposition 3.7 (i)], and
ny = c(u2) by Remark 6.3.

Proposition 7.6 Suppose that an irreducible generic representation w satisfies one of the
assumptions in this subsection. Then we have

L(s,w) = Lg(s, 1)

Proof In both cases, we have N; > 2 and N; > ny. So we may apply the results in [11].
Suppose that ¥ has conductor of. Let v be the newform for 7 such that W,(e) = 1.
Then by Proposition 3.4 and [11, Proposition 5.12], we see that Z(s, Wy, @y, ) has the form
1/P(q_2s), where P (X) is a polynomial in C[X] such that P(0) = 1 and deg P(X) < 1. So
Proposition 6.12 implies that Z(s, Wy, @®n,) = LEg(s, 1). Now the assertion follows from
Theorem 3.6. ]

8 L-factors of the depth zero supercuspidal representations

In this section, we determine L-factors of the generic depth zero supercuspidal representations
of G.
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8.1 Regular cuspidal representations of U(2, 1)(kr)

For any subgroup S of G = U(2, 1)(F), we denote by S the subgroup of G = U(2, 1)(kr)
which corresponds to S. For example, B is the Borel subgroup of G consisting of the upper
triangular elements with unipotent radical U, and

0
H= 1

b
0
0 d

e Gy ~ U, D(kp).

o O

Since kr is a finite field, we have G = U(2, 1)(kr) ~ U3)(kr) and H ~ U(2)(kr). In [6],
Ennola classified the irreducible representations of these two groups by giving the character
tables. B

Let 7 be a representation of G. For any subgroup S of G, we denote by 75 the space of
S-fixed vectors in 7. A representation t of G is called cuspidal if t¥ = {0}. We say that
7 is regular when Homg; (<, V) # {0}, where ¥ is a non-degenerate character of U. If 7 is
irreducible and regular, then the space Homg(z, V) is one-dimensional.

For any representation T of G, we denote by x. the character of . We use the notation of
irreducible characters of G in [6]. There are the following three kinds of irreducible cuspidal
characters.

(CD X:) - 1 <t < g+ 1. The corresponding representation is (¢> — ¢)-dimensional and
non-regular.

(C2) X((zt/’fi§Zq27q+l)’ 1 <t <u < v < g+ 1. The corresponding representation is (g —
1)(¢*> — q + 1)-dimensional and regular.

(C3) X((;)-i-l)(qz—l)’ 1<t<¢?t#0 (mod ¢g> — g + 1). The corresponding representation
is (g + 1)(q2 — 1)-dimensional and regular.

Proposition 8.1 Let T be an irreducible regular cuspidal representation of G.

(i) dim 87 = 1.
(ii) dim ¥ < 1. The equality holds if and only if x+
u<q+1.

(t,u,q+1)

= <
X(q—l)(qZ—q+1)f0r somel <t <

Proof (i) Since t is regular, the restriction of T to U contains a non-degenerate character
Y. The group Uy lies in the kernel of v, so 7 has a non-zero Uy-fixed vector. Because

Uy is a normal subgroup of U, the group U acts on the space tU#. We regard Ut g
U-module. Then U/ is a sum of one-dimensional representations of U since U/Upy is
abelian. The cuspidality of t implies that Ut is a sum of non-degenerate characters of
U. Since the diagonal subgroup Ty of H acts transitively on the set of the non-degenerate
characters of U, every non-degenerate character of U occurs in U Recall that for any
non-degenerate character ¥ of U, we have dim Homw(f, Y¥) = 1. Thus, every ¥ occurs in
Ut with multiplicity one. We fix a non-degenerate character i of U and take a vector v in
Ut 50 that U acts on Cv by ¥. Then for any a € k, the group U acts on Ct (t(a~))v by
¥ ,, where

Vo) = Y(t@ut@)), uel.
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We therefore have tUH = @aekz Cr(t(a~"))v.Notethat By = Tyy-Up andk; ~ Ty;a —
t(a). If we take a generator b of a cyclic group k5, then we see that Zosisqz—z t(bHvisa

basis for 5% . So we conclude that dim 8% = 1.
(i) Since By C H, we have t# C B By (i), we get dim 7 < dim tBH — 1. For any
two class functions x; and x» of H, we define

(X1, x2) = Z x1(h)xa(h).

| heH
We denote by 17 the trivial representation of H. By Schur orthogonality relations, we have

Xz, 1) = ﬁ > neq Xr(h) = dim oH. Using the character table in [6], one can check that

( (t,u,q+1)

(q—1)(g>—q+1) =1, forl <t <u<gqg+1

and that (x, 177) = 0 for any other irreducible regular cuspidal characters of G. This shows
the assertion. O

Let 7 be an irreducible regular cuspidal representation of G. By Proposition 8.1 (i), we
have dim 8% = 1. We fix a non-zero element vg in B4 and consider the vector

Z T(uw)vy = Z T(u(0, a)w)vy,

MEZE; ackp
where
0 0 1 1 0 aye -
w=|0 1 0),u0,a)=(0 1 0 eG
1 0 0 0 0 1
and we are regarding /€ € of as an | element in kg = og/pg. One may check that

Zaekp 7(u(0, a)w)vg also belongs to 784 Since T84 is one-dimensional, there exists an
element « in C such that

Z T(u(0, a)w)vyg = avy.
ackp

The following lemma determines o.
Lemma 8.2 Wehave(x—qlfr = {0}, anda——lzft = {0}.

Proof Note that we have v/ H  ¢BH because By C H. Suppose that T ;ﬁ {0}. Then it fol-

lows from Proposition 8.1 (i) that vy lies in tH — B So we have Zaekp T(u(0, a)w)vg =
quo and o = g since u(0, a)w € H.

Suppose that 7 = {0}. Then we get
at(w)vg = Z T(wu (0, a)w)vy = vo + Zr(wu(O, a)w)vg.
ackp a#0

For 0 # a € kr, we have

ayJe 0 1
wu 0, )w = u(0, (@e) Hw| 0 1 0 u(0, (@)™ h.
0 0 —(a/o!
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Since vy is fixed by By, we obtain

at(w)vg = v+ Y _ t(u(0, (ae)Hw)vy
a#0
=g+ Z T(u(0, a)w)vy — T(w)vg
ackp

= vg + avy — T(w)vo,

and hence (« + 1)t (w)vo = (@ + Dvo. If @ + 1 # 0, then by an Iwasawa decomposition
of H, we see that vy is fixed by H. This contradicts the assumption that H = {0}. So we
conclude that « = —1 as required. O

8.2 Generic depth zero supercuspidal representations

Every irreducible depth zero supercuspidal representation of G is induced from a maximal
compact subgroup Py of G. Up to conjugation, there are two maximal compact subgroup of
G. Thus we may assume Py = Ko = GL3(0g) N G or

O O Pg
ZoK1 = |peg or o |NG.

PE PE OE
We denote by P; the pro-p radical of Py. Then Py/P; is a reductive group over kr. We

note that if Py = GL3(0g) NG, then P; = (1 + M3(pg)) N G and Py/ P; is isomorphic to
G =UQ, )(kp).If Py = ZypK, then we have

1+pE OF OF
P = PE 1+4+pE op NG
PE pe 1+pe

and Py/ Py ~ U(1, 1)(kr) x U(1)(kF). Let p be an irreducible cuspidal representation of
Po/P1. Then 7 = c—Inng,o is an irreducible depth zero supercuspidal representation of
G, where p stands for the inflation of p to Py. We note that every irreducible depth zero
supercuspidal representation of G is obtained in this way.

Proposition 8.3 With the notation as above, 1 = c-Indg0 p is generic ifand only if Py = Ko
and p is regular.

Proof The proof is exactly same as that of Proposition 2.2 in [2]. O

Lemma 8.4 Fori = 1,2, let m; = c-Indg0 pi be an irreducible depth zero supercuspidal
representation of G, where p; is the inflation of an irreducible cuspidal representation p; of

G. Suppose that w1 is isomorphic to wy. Then py is isomorphic to p;.

Proof Suppose that 1 is isomorphic to ;. Since p; is contained in the restriction of m; to
Ko, there is an element g in Ko\ G/ Ky such that

Home gynk, (¢ o1, p2) # {0}
where 8 Ko = gKog_1 and 8 p; is the representation of 8 Ky defined by 8 p1 (k) = p; (g_lkg),
k € ¢ K. By a Cartan decomposition G = | ;- Ko¢' Ko, we may assume g = ¢'. Suppose

thati > 0. Then we have 0(05) C gKoﬂKo.Observethatg_IU(UE)g C 1+M3(pp))NG.
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This implies that U(UE) lies in the kernel of & p1. By Home gynk, (81, 02) # {0}, the
representation p; has 4 non-zero U (og)-fixed vector. This contradicts the cuspidality of py
because the image of U (op) 1n G = K /P1 is a maximal unipotent radical. Therefore we
conclude thati = Oand g = g = 1. Since Homg, (p1, p2) # {0} and p1, py are irreducible,
we have p; =~ p», and hence p; >~ p, as required. O

8.3 Conductors of depth zero supercuspidal representations

From now on, we assume that Py = Ko = GL3(0g) NG, Pi = (1 + M3(pg)) NG, and p
is an irreducible regular cuspidal representation of G ~ Ko/ P;. Then 7 = c-Inngp is an
irreducible generic depth zero supercuspidal representation of G.

Proposition 8.5 Let 1 = c-Indl(zo p be an irreducible generic depth zero supercuspidal
representation of G as above.

(i) 2 < Ne <3, B

(ii) Nn =2 if and only if p has a non-zero H-fixed vector.

Proof (i) By [12, Corollary 5.5 (i)], we have 2 < N. Observe

0F PE OF
Kon¢Kse ' =|p2 14+pl pe|naG.
PE p% oF

This implies that the image of Ko N ¢K3¢t~Vin Ko/ Py is By . By Proposition 8.1 (i), we can
take a non-zero Bp-fixed vector vg in p. We regard vy as a non-zero Ko N §K3§‘1-ﬁxed
vector in p. Then the function

p(p)vo, forg = plk, p € Ky, k € K3,
fle)= { 0, otherwise

is well-defined. Since f is a non-zero K3-fixed vector in 7 = c- Ind%op, we obtain N, < 3.

(i1) Since we have seen that 2 < N, it suffices to show that V(2) # {0} if and only if p
has a non-zero H-fixed vector. Suppose that p has a non-zero H-fixed vector vy. Then we
can construct a non-zero function f in V(2) as follows: One may check that

OF PE OF
Koﬂszé'il: PE 1—|—p2E pe | NG.
OF PE oF

Therefore the image of Ko N ¢ K>¢ ' in Ko/ Py is H. Regarding vg as a Ko N ¢ K»¢ ! -fixed
vector in p, we can define a non-zero function f in V (2) by

p(p)vo, forg= ptk, p € Ko, k € K>,
fg) = { 0, otherwise.

This implies V (2) # {0}.

Suppose that V (2) # {0}. Then 7 has anon-zero K»-fixed vector v. Since we are assuming
that 7 is of depth zero, there exists a non-zero (1 + M3 (pg)) N G-fixed vector in 7. This
implies that the group Z; = (1 + pg) N Z acts trivially on 7. So we see that 7 (¢)v is fixed
by

OF PE OF
Zy ¢kt ' =|pe l+pe pe|NG.
of PE [J2)
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Since P C Z; - ;Kzg’l, the vector 7 (¢)v lies in 7P If we regard xPlasa Ko/ P1-module,
7P is decomposed into a sum of irreducible cuspidal representations of G ~ K¢/ P; because
of Theorem 8.9 in [13]. By Lemma 8.4 and a standard argument, one can show that 71 is
isomorphic to p. Since the image of Z; - { K»¢ ~lin Ko/ P is H, 7 (¢)visanon-zero H-fixed
vector 71 ~ p. This completes the proof. O

Remark 8.6 Letm = c-Indl(z0 p be an irreducible generic depth zero supercuspidal represen-

tation of G. Recall that ﬁﬁ C ﬁﬁ. By the proof of Proposition 8.5, a newform f for 7 is
given by

Vg, = ptk, p € Ko, k € Ky,
Flg) = {p(p)o g =ptk, p € Ko N

otherwise,

where vg is a non-zero By -fixed vector in p.

8.4 L-factors of depth zero supercuspidal representations

We recall from [11] a formula of L-factors L(s, ) of irreducible generic supercuspidal
representations (i, V). We abbreviate N = N;. Let A be the eigenvalue of the Hecke
operator 7 on V (N). By Theorem 4.2, Propositions 3.5 and 5.12 in [11], we have

1
=Gt ghg 2>

We further recall from [11] a description of A. Let § : V(N) — V(N — 1) be the level
lowering operator. For v € V(N), it follows from Lemmas 5.4 and 5.9 in [11] that

Mw=Tv= n(§_1)8v — Z w(u(y,0))v

,VEPE]/UE

+ > > wu@ b

acop/pE bgp;N/p%;N

L(s,m) = 3.7

Since V(N — 1) = {0}, we have v = 0 so that
w=— Y aw@.ov+ > > x@@ b

vepy'/ok acor/PE pep N /pi N

We assume that 7 = c—Inngp is an irreducible generic depth zero supercuspidal represen-
tation of G. Take f € V(N) as in Remark 8.6. Then we obtain

M@ == > fQuy,o+ > Y. fQula b))

yepg'/ok a€oL/PE pep N /pi N

Note that f(¢) is a non-zero element in pB” Since ¢u(y, 0) = ¢u(y, 0)¢~ Ir = u(wy, 0)Z,
we have

Yo fQup o)=Y fu@,00= Y pwly,0)f@).

yepgl/oE YEOE/PE YEOE/PE

Since we are assuming that p is cuspidal, we have ﬁﬁ = {0}. Because f(¢) € ﬁﬁ - ﬁm
and U normalizes Uy, we see that Y veop/pp P, 0)) f(£) liesin 7Y = {0}. So we obtain
Zyepgl/of f(Cu(y,0)) =0, and hence
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M@O= Y. Y fGu@ b))

a€oE/PE pep N /piN

By ¢u(a,b); = ;u(a,O){‘lg'u(O,b)f = u(wa,0)¢u(0,b); and u(wa,0) € (1 +
M3(pg)) NG C ker p, we have
fQu(a,b)t) = pu(wa,0)) f(&u0, b)) = f(u0,b)¢)

and

M@O=q¢" Y. fQu©b)0). (8.8)

bepz" /piN

Proposition 8.9 Let 1 = c-Indgo p be an irreducible generic depth zero supercuspidal
representation of G.

(i) If Ny =2, then we have L(s, ) = Lg(s, 1).

(ii) If Ny =3, then L(s, ) = 1.

Proof (i) Suppose that N = N, = 2. Then, by Remark 8.6, the support of f € V(2) is
K¢ K5. Observe that

PE OE Pg
KotKx C | pe o pg
PE OE Pgp
For any b € p;N/pJZ;N, the (3, 3)-entry of ¢u(0, b)¢ is @ 2. So we have ¢u(0, b)¢ ¢
Kot Ko and f(¢u(0, b)) = 0. By (8.8), we get Af(¢) = 0 and A = 0. Therefore it follows
from (8.7) that L(s, ) = ﬁ = Lg(s, 1).
(i) If N = N, = 3, then Remark 8.6 implies that the support of f is Ko¢ K3. One may
check that
PE 0F Pg
KotK3 C |pg op pg
PE OF Pg
We see that if b ¢ p;2, then ¢u(0, b)¢ ¢ Ko¢ K3 and hence f(¢u(0, b)) = 0. Therefore
we have
M@ =g Y fGuO,b)X)

bepy’/py!
by (8.8). Since ¢u(0, b)¢ = ¢u(0, b):~'¢? = u(0, w?b)?, we get
M@ =q" Y p@Ob)f(E?).

beor/pr
Note that f is fixed by K3 and ¢? lies in w¢ K3. Thus we have
M@ =g Y p@O@.b)fw) =g Y p@O bw)f().

beor/pr beor/pr

Recall that f(¢) is a non-zero element in ﬁﬁ. By the assumption that N; = 3 and Propo-
sition 8.5 (ii), we have p = {0}. So Lemma 8.2 implies Af({) = —¢* f(¢) and A = —¢g>.
We conclude L(s, ) = 1 because of (8.7). O
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Remark 8.10 Let  be an irreducible generic supercuspidal representation of G. It follows
from Proposition 4.2 (i) that L(s, ) = 1 or Lg(s, 1). Propositions 8.1, 8.5 and 8.9 imply
that both cases occur.
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