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ON EPSILON FACTORS ATTACHED TO SUPERCUSPIDAL

REPRESENTATIONS OF UNRAMIFIED U(2, 1)

MICHITAKA MIYAUCHI

Abstract. Let G be the unramified unitary group in three variables defined
over a p-adic field F with p �= 2. Gelbart, Piatetski-Shapiro and Baruch at-
tached zeta integrals of Rankin-Selberg type to irreducible generic representa-
tions of G. In this paper, we formulate a conjecture on L- and ε-factors defined
through zeta integrals in terms of newforms for G, which is an analogue of the
result by Casselman and Deligne for GL(2). We prove our conjecture for the
generic supercuspidal representations of G.

1. Introduction

Local newforms play an important role in the theory of automorphic forms.
Casselman and Deligne established a theory of newforms for p-adic GL(2), which
can be stated as follows. Let F be a non-archimedean local field of characteristic
zero with the ring of integers oF and its maximal ideal pF . Let ψF be a non-
trivial additive character of F with conductor oF . The local counterpart of a level
subgroup of GL2(F ) is defined by

Γ0(p
n
F ) =

(
oF oF

pnF 1 + pnF

)×
,

for n ≥ 0. For each irreducible admissible representation (π, V ) of GL2(F ), we
define the subspace

V (n) = {v ∈ V |π(k)v = v, k ∈ Γ0(p
n
F )}

of V . Then the following theorem holds.

Theorem 1.1 ([2]). Let (π, V ) be an irreducible generic representation of GL2(F ).
(i) There exists a non-negative integer n such that V (n) �= {0}.
(ii) Put c(π) = min{n |V (n) �= {0}}. Then the space V (c(π)) is one-dimensional.

(iii) The ε-factor ε(s, π, ψF ) of π is a constant multiple of q
−c(π)s
F , where qF is

the cardinality of the residue field of F .

We call the integer c(π) the conductor of π and V (c(π)) the space of newforms for
π. Another important property of newforms is that the zeta integral of a newform
expresses the L-factor of a representation.

Theorem 1.2 ([3]). Let π be an irreducible generic representation of GL2(F )
and W a newform in the Whittaker model of π. Then the corresponding Jacquet-
Langlands’s zeta integral Z(s,W ) attains the L-factor of π.
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Similar results were obtained by Jacquet, Piatetski-Shapiro and Shalika [6] for
GLn(F ). Recently, Roberts and Schmidt [10] established a theory of newforms for
irreducible representations of GSp4(F ) whose central characters are trivial. Our
main concern is to construct a newform theory for unramified unitary group U(2, 1).

The aim of this paper is twofold. The first one is to formulate an analogue
of Theorem 1.2 for Gelbart and Piatetski-Shapiro’s zeta integrals for unramified
U(2, 1). Gelbart and Piatetski-Shapiro [4] initiated a theory of Rankin-Selberg in-
tegrals for U(2, 1), and Baruch [1] developed it. For a given irreducible generic
representation of U(2, 1), they attached a zeta integral involving a Whittaker func-
tion and a Schwartz function on F 2. The L-factor attached to an irreducible generic
representation of U(2, 1) is defined as the greatest common divisor of the zeta inte-
grals. For unramified U(2, 1), the author [8] introduced a family of open compact
subgroups and defined newforms for generic representations π. We conjecture that
the L-factor of π is represented by the zeta integral when the Whittaker function is
associated to the newform and the Schwartz function is the characteristic function
of a certain lattice in F 2 (Conjecture 4.1). In addition, our conjecture indicates the
relation between ε-factors and conductors (Theorem 4.3). We note that there is a
related work by Koseki and Oda [7] for the archimedean situation.

The second aim of this paper is to show that our conjecture holds for the generic
supercuspidal representations. The zeta integral involving the newform and the
characteristic function of a certain lattice in F 2 is decomposed into a product of
LE(s,1) and a more simple zeta integral of the newform, which is close to that for
GL(2) (Proposition 3.5). Here E is the unramified quadratic extension over F and
LE(s,1) stands for the L-factor of the trivial representation of GL1(E). To compute
the latter zeta integral, we follow the method by Roberts and Schmidt for GSp(4).
In [10], they utilized Hecke operators acting on the space of newforms to obtain a
key formula of the values of the Whittaker function associated to the newform at
diagonal matrices in terms of Hecke eigenvalues. The zeta integral of the newform is
determined by this formula. In their theory, the assumption on the central character
is crucial. We apply their method to representations of unramified U(2, 1) whose
conductors differ from those of their central characters to obtain an explicit formula
of zeta integrals of newforms in terms of Hecke eigenvalues (Proposition 5.12). All
the supercuspidal representations satisfy this assumption on the central characters,
so our conjecture holds for them.

We summarize the contents of this paper. In section 2, we fix the basic notation
for representations of the unramified unitary group in three variables and recall the
notion of its newforms. In section 3, we recall from [1] the theory of Rankin-Selberg
integral for unramified U(2, 1) and give some computation relating to newforms. In
section 4, we give Conjecture 4.1, which says that zeta integrals of newforms attain
the L-factors of representations. In section 5, we introduce the Hecke operator and
the level lowering operator, and give their explicit description. Using these opera-
tors, we get a formula of zeta integrals of newforms in terms of Hecke eigenvalues.
In section 6, we show that our conjecture is true for all the generic supercuspidal
representations of unramified U(2, 1).

Unfortunately, our conjecture is still open for non-supercuspidal representations.
For such representations, conductors may be equal to those of central characters,
so our technique in section 5 does not work. We will develop a theory of Hecke
operators for such representations, and show the validity of the conjecture in our
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ongoing work. It is also an important problem to compare L- and ε-factors defined
through zeta integrals with those of L-parameters.

2. Preliminaries

In subsection 2.1, we fix our notation for unramified U(2, 1), which is used in
this paper. In subsection 2.2, we recall from [8] the definition and basic properties
of newforms for unramified U(2, 1).

2.1. Notation. Let F be a non-archimedean local field of characteristic zero, oF
its ring of integers, and pF = �F oF the maximal ideal in oF . We write q = qF for
the cardinality of oF /pF . Let | · |F denote the absolute value of F normalized so
that |�F |F = q−1

F . We use the analogous notation for any non-archimedean local
field. Throughout this paper, we assume that the residual characteristic of F is
odd.

Let E = F [
√
ε] be the unramified quadratic extension over F , where ε is a non-

square unit in oF . We know that qE = q2 and �F is a uniformizer of E. So we
abbreviate � = �F . We set G = {g ∈ GL3(E) | tgJg = J}, where − is the
non-trivial element in Gal(E/F ) and

J =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ .

Then G is a realization of the F -points of unramified U(2, 1) defined over F . We
denote by e the identity element of G.

Let B be the Borel subgroup of G consisting of the upper triangular elements in
G with Levi subgroup T of diagonal matrices in G and unipotent radical U . We
write Û for the opposite of U :

U =

⎧⎨
⎩u(x, y) =

⎛
⎝ 1 x y

0 1 −x
0 0 1

⎞
⎠

∣∣∣∣∣x, y ∈ E, y + y + xx = 0

⎫⎬
⎭ ,

Û =

⎧⎨
⎩û(x, y) =

⎛
⎝ 1 0 0

x 1 0
y −x 1

⎞
⎠

∣∣∣∣∣x, y ∈ E, y + y + xx = 0

⎫⎬
⎭ .

We shall identify the subgroup

H =

⎧⎨
⎩
⎛
⎝ a 0 b

0 1 0
c 0 d

⎞
⎠ ∈ G

⎫⎬
⎭

of G with U(1, 1). We set BH = B ∩H, UH = U ∩H and TH = T ∩H:

TH =

⎧⎨
⎩t(a) =

⎛
⎝ a 0 0

0 1 0
0 0 a−1

⎞
⎠

∣∣∣∣∣ a ∈ E×

⎫⎬
⎭ .

For a ∈ E×, we put t(a) =

(
a 0
0 a−1

)
and d(a) =

(
a 0
0 1

)
. Then every

element h in H = U(1, 1) can be decomposed into

h = t(b)d(
√
ε)h1d(

√
ε
−1

),(2.1)

where b ∈ E× and h1 ∈ SL2(F ).
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For a non-trivial additive character ψE of E, we define a character ψE of U by

ψE(u(x, y)) = ψE(x), for u(x, y) ∈ U.

We say that a smooth representation (π, V ) of G is generic if HomU (π, ψE) �= {0}.
Suppose that (π, V ) is irreducible and generic. Then it is well-known that

dimHomU (π, ψE) = 1.

By Frobenius reciprocity, there exists a unique embedding of π into IndGUψE up to
scalar. The image W(π, ψE) of V is called the Whittaker model of π. By a non-
zero functional l ∈ HomU (π, ψE), we define the Whittaker function Wv ∈ W(π, ψE)
associated to v ∈ V by

Wv(g) = l(π(g)v), g ∈ G.

We may identify the center Z of G with the norm-one subgroup E1 of E×. Under
this identification, we set open compact subgroups of Z as

Z0 = Z, Zn = Z ∩ (1 + pnE), for n ≥ 1.

For an irreducible admissible representation π of G, we denote by ωπ the central
character of π. We define the conductor of ωπ by

nπ = min{n ≥ 0 |ωπ|Zn
= 1}.

2.2. Newforms. For a non-negative integer n, we define an open compact sub-
group Kn of G by

Kn =

⎛
⎝ oE oE p

−n
E

pnE 1 + pnE oE

pnE pnE oE

⎞
⎠ ∩G.

For a smooth representation (π, V ) of G, we denote by V (n) the space of Kn-fixed
vectors in V , namely,

V (n) = {v ∈ V |π(k)v = v, k ∈ Kn}, n ≥ 0.

Theorem 2.2 ([8] Theorems 2.8, 5.6, Corollary 5.5(i)). Suppose that (π, V ) is an
irreducible generic representation of G.

(i) There exists a non-negative integer n such that V (n) �= {0}.
(ii) Put Nπ = min{n ≥ 0 |V (n) �= {0}}. Then dimV (Nπ) = 1.
(iii) If π is supercuspidal, then we have Nπ ≥ 2 and Nπ > nπ.

Definition 2.3 ([8] Definition 2.6). Let (π, V ) be an irreducible generic represen-
tation of G. We call Nπ the conductor of π and V (Nπ) the space of newforms for
π.

We recall some properties of Whittaker functions associated to newforms. Let
(π, V ) be an irreducible generic representation of G. For each v ∈ V , we can regard
Wv|TH

as a locally constant function on E×. Along the lines of the Kirillov theory
for GL(2), we see that there exists an integer n such that suppWv|TH

is contained
in p

−n
E . Moreover, if v is an element in 〈π(u)w − w | u ∈ U, w ∈ V 〉, then Wv|TH

is a compactly supported function on E×.

Proposition 2.4 ([8] Corollary 4.6, Theorem 4.12). Suppose that ψE has conductor
oE. Let π be an irreducible generic representation of G and let v be a newform for
π.

(i) The function Wv|TH
is o

×
E-invariant and its support is contained in oE.

(ii) Suppose that Nπ ≥ 2 and Nπ > nπ. Then Wv(e) = 0 if and only if v = 0.
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3. Rankin-Selberg integral

In this section, we recall from [1] the theory of the Rankin-Selberg integral for
unramified U(2, 1) by Gelbart, Piatetski-Shapiro and Baruch, and give some com-
putation relating to newforms. For an irreducible generic representation π of G,
its zeta integral has the form Z(s,W,Φ), where W is a Whittaker function for π
and Φ is a Schwartz function on F 2. In subsection 3.1, we see that Z(s,W,Φ) can
be decomposed into a product of a more simple zeta integral and the L-factor of
the trivial representation of E× when W is associated to a newform for π and Φ
is the characteristic function of a certain lattice in F 2. The L-factor attached to π
is defined as the greatest common divisor of the zeta integrals. In subsection 3.2,
we quote the result by Ishikawa on the shape of L-factors of supercuspidal rep-
resentations. In subsection 3.3, we recall their functional equation, and relate it
with contragradient representations. In subsection 3.4, we show that ε-factors are
monomial.

3.1. Zeta integrals. Let C∞
c (F 2) be the space of locally constant, compactly sup-

ported functions on F 2. For Φ ∈ C∞
c (F 2) and g ∈ GL2(F ), we define a function gΦ

in C∞
c (F 2) by

(gΦ)(x, y) = Φ((x, y)g), (x, y) ∈ F 2.

We normalize the Haar measure on F× so that the volume of o
×
F is one. For

Φ ∈ C∞
c (F 2) and g ∈ GL2(F ), we define a function z(s, g,Φ) on C by

z(s, g,Φ) =

∫
F×

(gΦ)(0, r)|r|sEd×r, s ∈ C.

For any subset S of F 2, we denote by chS the characteristic function of S. We
set Φn = chpn

F⊕oF
, for each integer n. We define the L-factor LE(s, χ) of a quasi-

character χ of E× as usual:

LE(s, χ) =

⎧⎨
⎩

1

1− χ(�)q−2s
, if χ is unramified;

1, if χ is ramified.

We denote by 1 the trivial character of E×.

Lemma 3.1. For any k ∈
(

oF p
−n
F

pnF oF

)×
, we have z(s, k,Φn) = LE(s,1).

Proof. Since k ∈
(

oF p
−n
F

pnF oF

)×
fixes the lattice pnF ⊕ oF , we have kΦn = Φn.

Thus we get

z(s, k,Φn) =

∫
F×

Φn(0, r)|r|sEd×r =

∫
oF∩F×

|r|2sF d×r = LE(s,1),

as required. �

For h ∈ H and Φ ∈ C∞
c (F 2), we set

f(s, h,Φ) = |b|sEz(s, h1,Φ), s ∈ C,

where b ∈ E× and h1 ∈ SL2(F ) are as in (2.1). By [1] Lemma 2.5, the definition
of f(s, h,Φ) is independent of the choice of b ∈ E× and h1 ∈ SL2(F ). Set Kn,H =
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Kn ∩ H. We may identify Kn,H with

(
oE p

−n
E

pnE oE

)
∩ U(1, 1). Because Kn,H

is a good maximal compact subgroup of H, we have an Iwasawa decomposition
H = UHTHKn,H . We note that

f(s, t(a)k,Φ) = |a|sEf(s, k,Φ), a ∈ E×, k ∈ Kn,H .(3.2)

Lemma 3.3. For any k ∈ Kn,H , we have f(s, k,Φn) = LE(s,1).

Proof. We can decompose k ∈ Kn,H as k = t(b)d(
√
ε)k1d(

√
ε
−1

), where b ∈ o
×
E and

k1 ∈
(

oF p
−n
F

pnF oF

)×
∩SL2(F ). So we obtain f(s, k,Φ) = |b|sEz(s, k1,Φ) = LE(s,1)

by Lemma 3.1. �

Let π be an irreducible generic representation of G. For W ∈ W(π, ψE) and
Φ ∈ C∞

c (F 2), we define the zeta integral

Z(s,W,Φ) =

∫
UH\H

W (h)f(s, h,Φ)dh.

By [1] Proposition 3.4, the integral Z(s,W,Φ) absolutely converges to a function
in C(q−2s) when Re(s) is sufficiently large. We normalize the Haar measures on
E× and Kn,H so that the volumes of o×E and of Kn,H are one respectively. By the
Iwasawa decomposition H = UHTHKn,H and the isomorphism E× 
 TH ; a �→ t(a),
we obtain

Z(s,W,Φ) =

∫
Kn,H

∫
E×

W (t(a)k)f(s, t(a)k,Φ)|a|−1
E d×adk.(3.4)

We define another zeta integral of W in W(π, ψE) by

Z(s,W ) =

∫
E×

W (t(a))|a|s−1
E d×a.

By the proof of [1] Proposition 3.4, Z(s,W ) also converges absolutely to a function
in C(q−2s) if Re(s) is large enough.

Proposition 3.5. Suppose that W ∈ W(π, ψE) is fixed by Kn,H . Then we have

Z(s,W,Φn) = Z(s,W )LE(s,1).

Proof. If W ∈ W(π, ψE) is fixed by Kn,H , then we get

Z(s,W,Φn) =

∫
Kn,H

∫
E×

W (t(a))|a|s−1
E f(s, k,Φn)d

×adk

=

∫
E×

W (t(a))|a|s−1
E d×a ·

∫
Kn,H

f(s, k,Φn)dk

by (3.2) and (3.4). Now the assertion follows from Lemma 3.3 and the definition of
Z(s,W ). �
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3.2. L-factors. Let Iπ be the subspace of C(q−2s) spanned by Z(s,W,Φ) where
Φ ∈ C∞

c (F 2), W ∈ W(π, ψE) and ψE runs over the non-trivial additive characters
of E. As remarked in [1] p. 331, Iπ is a fractional ideal of C(q−2s). So we can find
a polynomial P (X) ∈ C[X] such that P (0) = 1 and 1/P (q−2s) generates Iπ. We
define the L-factor L(s, π) of π by

L(s, π) =
1

P (q−2s)
.

The following proposition is due to Ishikawa, but the statement is slightly mod-
ified.

Proposition 3.6 ([5] Theorem 4(4)). Let π be an irreducible generic supercuspidal
representation of G. Then L(s, π) equals to 1 or LE(s,1).

Proof. It is enough to show that the function Z(s,W,Φ)/LE(s,1) belongs to
C[q−2s, q2s] for all W ∈ W(π, ψE), Φ ∈ C∞

c (F 2) and non-trivial additive characters
ψE of E. Since W (h) and f(s, h,Φ) are right smooth with respect to h ∈ H, the in-
tegral Z(s,W,Φ) is a linear combination of functions of the form Z(s,W ′)f(s,1,Φ′),
where W ′ ∈ W(π, ψE) and Φ′ ∈ C∞

c (F 2). It follows from [8] Propositions 4.1(ii)
and 4.7 that W ′|TH

is a compactly supported function on TH 
 E×. Note that
in [8], we assume that ψE has conductor oE , but Proposition 4.7 holds for all ψE .
This implies that Z(s,W ′) lies in C[q−2s, q2s]. Due to the theory of zeta integrals
for GL(1), we see that f(s,1,Φ′)/LE(s,1) belongs to C[q−2s, q2s]. This completes
the proof. �
3.3. The functional equation. Let ψF be a non-trivial additive character of F

with conductor p
c(ψF )
F . We choose the Haar measure on F 2 normalized so that the

volume of oF ⊕oF is qc(ψF ). For each Φ ∈ C∞
c (F 2), we define the Fourier transform

Φ̂ by

Φ̂(x, y) =

∫
F 2

Φ(u, v)ψF (yu− xv)dudv.

One can check that
ˆ̂
Φ = Φ for all Φ ∈ C∞

c (F 2).

Lemma 3.7. Suppose that the conductor of ψF is oF . Then we have

z(1− s, k, Φ̂n) = q−2n(s−1/2)LE(1− s,1),

for any k ∈
(

oF p
−n
F

pnF oF

)×
.

Proof. It is easy to observe that Φ̂n = q−nch
oF⊕p

−n
F

. Since Φ̂n is fixed by k, we get

z(1− s, k, Φ̂n) = q−n

∫
F×

ch
oF⊕p

−n
F

(0, r)|r|1−s
E d×r

= q−n

∫
p
−n
F ∩F×

|r|1−s
E d×r

= q−2n(s−1/2)LE(1− s,1),

as required. �

Corollary 3.8. If the conductor of ψF is oF , then we have f(1 − s, k, Φ̂n) =
q−2n(s−1/2)LE(1− s,1), for k ∈ Kn,H .
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Proof. Exactly the same as the proof of Lemma 3.3. �

Proposition 3.9. Suppose that ψF has conductor oF . If a Whittaker function W
in W(π, ψE) is fixed by Kn,H , then we have

Z(1− s,W, Φ̂n) = q−2n(s−1/2)Z(1− s,W,Φn).

Proof. By the proof of Proposition 3.5, we get

Z(1− s,W, Φ̂n) = Z(1− s,W ) ·
∫
Kn,H

f(1− s, k, Φ̂n)dk.

Due to Corollary 3.8, one has Z(1−s,W, Φ̂n) = q−2n(s−1/2)Z(1−s,W )LE(1−s,1).

So we get Z(1− s,W, Φ̂n) = q−2n(s−1/2)Z(1− s,W,Φn) by Proposition 3.5. �

By [1] Corollary 4.8, there exists a rational function γ(s, π, ψF , ψE) in q−2s such
that

γ(s, π, ψF , ψE)Z(s,W,Φ) = Z(1− s,W, Φ̂).(3.10)

Note that in the right hand side we do not take the contragradient of W . To
extract the ε-factor of π from our integrals, the above relation is the right form of
the local functional equation. We explain this in more detail in the remaining of
this subsection.

For an irreducible admissible representation (π, V ) of G, we denote by π̃ its
contragradient representation, and by π the representation of G on V defined by

π(g) = π(g), g ∈ G.

Lemma 3.11. Let π be an irreducible admissible representation of G. Then π̃ is
isomorphic to π.

Proof. We define a Hermitian form h on E3 by

h(v, w) = tvJw, v, w ∈ E3.

Then G is just the group of isometries of (E3, h). Let δ be the element in AutFE
3

defined by δv = v for v ∈ E3. Then it follows from [9] p. 91 that π̃ is isomorphic to
πδ where πδ(g) = π(δgδ−1), for g ∈ G. Since πδ(g) = π(g), for g ∈ G, the lemma
follows. �

We further assume π is generic. For W ∈ W(π, ψE), we set

W (g) = W (g), g ∈ G.

By Lemma 3.11, we see that W lies in W(π, ψE) = W(π̃, ψE), where ψE is the
character of U given by ψE(u) = ψE(u), u ∈ U . We define another Fourier trans-
formation on C∞

c (F 2) as follows:

Φ∗(x, y) =

∫
F 2

Φ(u, v)ψF (yu+ xv)dudv, Φ ∈ C∞
c (F 2).

We shall rewrite the right hand side of (3.10) as a zeta integral of π̃.

Lemma 3.12. For W ∈ W(π, ψE) and Φ ∈ C∞
c (F 2), we have

Z(s,W, Φ̂) = Z(s,W,Φ∗).
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Proof. We claim that d(−1)Φ∗ = Φ̂. In fact, we have

(d(−1)Φ∗)(x, y) = Φ∗((x, y)d(−1)) = Φ∗(−x, y)

=

∫
F 2

Φ(u, v)ψF (yu− xv)dudv = Φ̂(x, y),

for (x, y) ∈ F 2. Thus, for g ∈ GL2(F ), we obtain

z(s, d(−1)gd(−1),Φ∗) =

∫
F×

(d(−1)gd(−1)Φ∗)(0, r)|r|sEd×r

=

∫
F×

(gΦ̂)((0, r)d(−1))|r|sEd×r

=

∫
F×

(gΦ̂)(0, r)|r|sEd×r = z(s, g, Φ̂).

Next, we shall show that f(s, h,Φ∗) = f(s, h, Φ̂) for all h ∈ H. Suppose that

h ∈ H is written as h = t(b)d(
√
ε)h1d(

√
ε
−1

), where b ∈ E× and h1 ∈ SL2(F ).
Then we get

h = t(b)d(
√
ε)h1d(

√
ε
−1

) = t(b)d(−
√
ε)h1d(−

√
ε
−1

)

= t(b)d(
√
ε)d(−1)h1d(−1)d(

√
ε
−1

).

Since d(−1)h1d(−1) lies in SL2(F ) and the section f is independent of the choice

of b and h1, we have f(s, h,Φ∗) = |b|sEz(s, d(−1)h1d(−1),Φ∗) = |b|sEz(s, h1, Φ̂) =

f(s, h, Φ̂).
Haar measure dh on UH\H satisfies dh = dh since UH and Kn,H are stable

under the action of Gal(E/F ). Therefore we get

Z(s,W,Φ∗) =

∫
UH\H

W (h)f(s, h,Φ∗)dh =

∫
UH\H

W (h)f(s, h,Φ∗)dh

=

∫
UH\H

W (h)f(s, h,Φ∗)dh =

∫
UH\H

W (h)f(s, h, Φ̂)dh

= Z(s,W, Φ̂).

This is the asserted equation. �

Lemma 3.12 tells that the L-factor of π coincides with that of π̃.

Proposition 3.13. For any irreducible generic representation π of G, we have
L(s, π) = L(s, π̃).

Proof. It follows from Lemma 3.12 that the space Iπ coincides with Iπ̃. Now the
assertion is obvious. �

3.4. ε-factors. The ε-factor ε(s, π, ψF , ψE) of an irreducible generic representation
π of G is defined by

ε(s, π, ψF , ψE) = γ(s, π, ψF , ψE)
L(s, π)

L(1− s, π̃)
.

Due to Proposition 3.13, we have

ε(s, π, ψF , ψE) = γ(s, π, ψF , ψE)
L(s, π)

L(1− s, π)
.(3.14)
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Proposition 3.15. The ε-factor ε(s, π, ψF , ψE) is a monomial in C[q−2s, q2s] of
the form

ε(s, π, ψF , ψE) = ±q−2n(s−1/2),

with some n ∈ Z.

Proof. By definition, there exist Φi ∈ C∞
c (F 2), additive characters ψE,i of E and

Wi ∈ W(π, ψE,i) (1 ≤ i ≤ k) such that

k∑
i=1

Z(s,Wi,Φi)

L(s, π)
= 1.(3.16)

By the proof of [1] Lemma 4.9, there existsW ′
i ∈ W(π, ψE) such that Z(s,Wi,Φi) =

q−2smiZ(s,W ′
i ,Φi), for some mi ∈ Z. From (3.16), we have the following expression

of the ε-factor:

ε(s, π, ψF , ψE) = ε(s, π, ψF , ψE)
k∑

i=1

q−2smiZ(s,W ′
i ,Φi)

L(s, π)

=
k∑

i=1

q−2smiZ(1− s,W ′
i , Φ̂i)

L(1− s, π)
.

The second equality is a consequence of (3.10) and (3.14). This implies that
ε(s, π, ψF , ψE) is a polynomial in q−2s and q2s.

By the above expression of the ε-factor, we get

ε(s, π, ψF , ψE)ε(1− s, π, ψF , ψE) = ε(s, π, ψF , ψE)

k∑
i=1

q−2(1−s)miZ(s,W ′
i , Φ̂i)

L(s, π)

=

k∑
i=1

q−2(1−s)miZ(1− s,W ′
i ,Φi)

L(1− s, π)

= 1.

In the second equality, we use the functional equation and
ˆ̂
Φi = Φi. The last equal-

ity is a consequence of (3.16). Now the assertion follows by standard arguments. �

4. Conjecture on newforms

We give the following conjecture on zeta integrals of newforms.

Conjecture 4.1. We fix an additive character ψE of E with conductor oE. Let π
be an irreducible generic representation of G. Then there exists a newform v for π
which satisfies

Z(s,Wv,ΦNπ
) = L(s, π),

where Nπ is the conductor of π and ΦNπ
is the characteristic function of pNπ

F ⊕ oF .

Here is our main theorem, which will be proved in section 6.

Theorem 4.2. Conjecture 4.1 holds for any irreducible generic supercuspidal rep-
resentations of G.

If Conjecture 4.1 is true, then we obtain a formula of the ε-factors, which says
that the exponents of q−2s of the ε-factors for generic representations agree with
their conductors.
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Theorem 4.3. Let ψE and ψF be additive characters of E and of F with conduc-
tors oE and oF respectively. Assume that Conjecture 4.1 is true for an irreducible
generic representation π of G. Then we have

ε(s, π, ψF , ψE) = q
−Nπ(s−1/2)
E ,

where Nπ is the conductor of π and qE is the cardinality of the residue field of E.

Proof. By assumption, there exists a newform v for π such that Z(s,Wv,ΦNπ
) =

L(s, π). By Proposition 3.9 and the assumption, we have

Z(1− s,Wv, Φ̂Nπ
) = q−2Nπ(s−1/2)Z(1− s,Wv,ΦNπ

)

= q−2Nπ(s−1/2)L(1− s, π).

So we get

ε(s, π, ψF , ψE) = γ(s, π, ψF , ψE)
L(s, π)

L(1− s, π)

=
Z(1− s,Wv, Φ̂Nπ

)

Z(s,Wv,ΦNπ
)

L(s, π)

L(1− s, π)

= q−2Nπ(s−1/2).

This proves the theorem. �

5. Zeta integrals of newforms

To show Theorem 4.2, let us compute zeta integrals of newforms for generic
supercuspidal representations of G. It follows from Theorem 2.2(iii) that generic
supercuspidal representations (π, V ) of G satisfy Nπ ≥ 2 and Nπ > nπ. Thus,
we treat representations with this property in this section. In subsection 5.1, we
introduce the Hecke operator T on V (n) and give its explicit description. If n = Nπ,
then this operator is scalar and has the Hecke eigenvalue. In subsection 5.2, we
consider the level lowering operator δ : V (n) → V (n − 1) and give its explicit
formula when n ≥ 2 and n > nπ. Combining these results, in subsection 5.3, we get
a recursion formula of the values of the Whittaker functions associated to newforms
at diagonal matrices (Lemma 5.11), which gives an explicit formula of zeta integrals
of newforms in terms of Hecke eigenvalues (Proposition 5.12). The results in this
section are strongly inspired by those in [10] sections 6 and 7.

5.1. Hecke operator. From now on, we fix a non-trivial additive character ψE of
E with conductor oE . Put

ζ =

⎛
⎝ �

1
�−1

⎞
⎠ .

Let (π, V ) be an irreducible generic representation of G and n a non-negative inte-
ger. We define the Hecke operator T on V (n) by

Tv =
1

vol(Kn)

∫
KnζKn

π(k)vdk, v ∈ V (n).
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Using the bijection Kn/Kn∩ζKnζ
−1 
 KnζKn/Kn; k(Kn∩ζKnζ

−1) �→ kζKn, we
can write Tv as

Tv =
∑

k∈Kn/Kn∩ζKnζ−1

π(kζ)v.(5.1)

We set

tn =

⎛
⎝ �−n

1
�n

⎞
⎠ ∈ Kn.

Lemma 5.2. Suppose that n ≥ 1. Then a complete set of representatives for
Kn/Kn ∩ ζKnζ

−1 is given by

tnu(y, z
√
ε− yy/2) and u(a, b

√
ε− aa/2),

where y, a ∈ oE/pE, z ∈ p
1−n
F /p2−n

F and b ∈ p
−n
F /p2−n

F .

Proof. Note that

Kn ∩ ζKnζ
−1 =

⎛
⎝ oE pE p

2−n
E

pnE 1 + pnE pE

pnE pnE oE

⎞
⎠ ∩G.

Set

K ′ =

⎛
⎝ oE oE p

1−n
E

pnE 1 + pnE oE

pnE pnE oE

⎞
⎠ ∩G.

Clearly, the following two claims assert the lemma:

(i) A complete set of representatives for Kn/K
′ is given by the q+1 elements

tn and u(0, x
√
ε), where x ∈ p

−n
F /p1−n

F .
(ii) We can take a complete set of representatives for K ′/Kn ∩ ζKnζ

−1 as the
q3 elements u(y, z

√
ε− yy/2), where y ∈ oE/pE , z ∈ p

1−n
F /p2−n

F .

We shall prove these claims. It is obvious that elements in (i) and (ii) belong to
pairwise distinct cosets in Kn/K

′ and K ′/Kn ∩ ζKnζ
−1 respectively.

(i) We denote by gij the (i, j)-entry of g ∈ M3(E). Let k ∈ Kn. If k33 ∈ pE , then
we get tnk ∈ K ′, and hence k ∈ tnK

′. Suppose that k33 ∈ o
×
E . Since k lies in G, k

satisfies J tkJk = e (see subsection 2.1). Comparing (1, 3)-entries of this equation,
we have k13k33 + k23k23 + k33k13 = 0. We note that k13 ∈ p

−n
E and k23, k33 ∈ oE

because k ∈ Kn. Since k13k33 ∈ p
−n
E satisfies k13k33 + k33k13 = −k23k23 ∈ oF , one

has k13k33 ∈ oF ⊕ p
−n
F

√
ε. By the assumption k33 ∈ o

×
E , we have k33k33 ∈ o

×
F , and

hence k13k
−1
33 = (k33k33)

−1k13k33 ∈ oF ⊕ p
−n
F

√
ε. Thus there exists x ∈ p

−n
F such

that k13k
−1
33 −x

√
ε ∈ oF . Using the assumption again, we get k13 −x

√
εk33 ∈ oE ⊂

p
1−n
E . This implies u(0,−x

√
ε)k ∈ K ′, so that k ∈ u(0, x

√
ε)K ′.

(ii) If n = 1, then K ′ lies in the standard Iwahori subgroup of G. One can

see that K ′ has an Iwahori decomposition K ′ = (K ′ ∩ Û)(K ′ ∩ T )(K ′ ∩ U). The

assertion follows because (K ′ ∩ Û)(K ′ ∩ T ) ⊂ Kn ∩ ζKnζ
−1.

Suppose that n ≥ 2. For k ∈ K ′, we set y = k−1
22 k12. Then y lies in oE . Since

det k ∈ E1 and det k ≡ k11k33 (mod pE), the element k33 must belong to o
×
E . As
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in the proof of (i), we can take z ∈ p
1−n
F such that k13 − z

√
εk33 ∈ oE ⊂ p

2−n
E .

Then one can easily check that k belongs to u(y, z
√
ε− yy/2)(Kn ∩ ζKnζ

−1). This
completes the proof. �

Lemma 5.2 gives an explicit description of the Hecke operator T . For v ∈ V (n),
we set

v′ =
∑

y∈p
n−1
E /pn

E

∑
z∈p

n−1
F /pn

F

π(û(y, z
√
ε− yy/2))v.(5.3)

Then we get the following lemma.

Lemma 5.4. Suppose that n ≥ 1. Then we have

Tv = π(ζ−1)v′ +
∑

a∈oE/pE

∑
b∈p

−n
F /p2−n

F

π(u(a, b
√
ε− aa/2)ζ)v,

for v ∈ V (n).

Proof. By (5.1) and Lemma 5.2, we obtain

Tv =
∑

y∈oE/pE

z∈p
1−n
F /p2−n

F

π(tnu(y, z
√
ε− yy/2)ζ)v +

∑
a∈oE/pE

b∈p
−n
F /p2−n

F

π(u(a, b
√
ε− aa/2)ζ)v.

Here we note that tn ∈ Kn so π(tn)v = v, and use ζtn = tn−1 and

tn−1u(y, z
√
ε− yy/2)tn−1 = û(−�n−1y,�2n−2(z

√
ε− yy/2)),

then

π(tnu(y, z
√
ε− yy/2)ζ)v = π(ζ−1)π(ζtnu(y, z

√
ε− yy/2)ζtn)v

= π(ζ−1)π(û(−�n−1y,�2n−2(z
√
ε− yy/2)))v.

Hence we get ∑
y∈oE/pE

z∈p
1−n
F /p2−n

F

π(tnu(y, z
√
ε− yy/2)ζ)v

=π(ζ−1)
∑

y∈oE/pE

z∈p
1−n
F /p2−n

F

π(û(−�n−1y,�2n−2(z
√
ε− yy/2)))v

=π(ζ−1)v′,

which completes the proof. �

We shall consider the case when n = Nπ. Because V (Nπ) is one-dimensional,
there exists λ ∈ C such that Tv = λv for all v ∈ V (Nπ). We call λ the Hecke
eigenvalue of T . For a newform v in V (Nπ), we put

ci = Wv(ζ
i), c′i = Wv′(ζi), i ∈ Z.(5.5)

Then we obtain the following lemma.

Lemma 5.6. Suppose that Nπ ≥ 1. Then we have

λci = c′i−1 + q4ci+1, i ≥ 0.
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Proof. Set n = Nπ. Taking the Whittaker function of λv = Tv, we have λWv(ζ
i) =

WTv(ζ
i), i ≥ 0. By Lemma 5.4, we obtain

WTv(ζ
i) = Wv′(ζi−1) +

∑
a∈oE/pE

b∈p
−n
F /p2−n

F

Wv(ζ
iu(a, b

√
ε− aa/2)ζ).

Observe that

ζiu(a, b
√
ε− aa/2)ζ = ζiu(a, b

√
ε− aa/2)ζ−iζi+1

= u(�ia,�2i(b
√
ε− aa/2))ζi+1.

Thus, we get

Wv(ζ
iu(a, b

√
ε− aa/2)ζ) = Wv(u(�

ia,�2i(b
√
ε− aa/2))ζi+1)

= ψE(�
ia)Wv(ζ

i+1) = Wv(ζ
i+1),

for a ∈ oE and i ≥ 0 because we assume that ψE has conductor oE . Consequently,
we obtain

λWv(ζ
i) = Wv′(ζi−1) + q4Wv(ζ

i+1),

for i ≥ 0. This proves the lemma. �
5.2. Level lowering operator. Let (π, V ) be an irreducible generic representation
of G and let n be an integer greater than nπ. Then Zn−1 acts on V trivially, and
hence every vector in V (n) is fixed by Zn−1Kn. We define the level lowering operator
δ : V (n) → V (n− 1) by

δv =
1

vol(Kn−1 ∩ (Zn−1Kn))

∫
Kn−1

π(k)vdk, v ∈ V (n).

By the assumption n > nπ, we can write δv as

δv =
∑

Kn−1/Kn−1∩(Zn−1Kn)

π(k)v, v ∈ V (n).(5.7)

Lemma 5.8. Suppose that n ≥ 2. Then a complete set of representatives for
Kn−1/Kn−1 ∩ (Zn−1Kn) is given by

tn−1û(y,−yy/2) and û(a, b
√
ε− aa/2),

where y, a ∈ p
n−1
E /pnE and b ∈ p

n−1
F /pnF .

Proof. The proof is quite similar to that of Lemma 5.2. One can easily check that

Kn−1 ∩ (Zn−1Kn) =

⎛
⎝ oE oE p

1−n
E

pnE 1 + p
n−1
E oE

pnE pnE oE

⎞
⎠ ∩G.

We set

K ′′ =

⎛
⎝ oE oE p

1−n
E

p
n−1
E 1 + p

n−1
E oE

pnE p
n−1
E oE

⎞
⎠ ∩G.

Then it suffices to show the following two claims:

(i) We can take a complete set of representatives for Kn−1/K
′′ as the q + 1

elements tn−1 and û(0, x
√
ε), where x ∈ p

n−1
F /pnF .

(ii) A complete set of representatives for K ′′/Kn−1 ∩ (Zn−1Kn) is given by the
q2 elements û(y,−yy/2), where y ∈ p

n−1
E /pnE .
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We shall prove these claims. Clearly, the elements in (i) and (ii) are contained in
pairwise disjoint cosets in Kn−1/K

′′ and K ′′/Kn−1 ∩ (Zn−1Kn) respectively.
(i) Let k ∈ Kn−1. If k11 ∈ pE , then we have tn−1k ∈ K ′′. So we get k ∈ tn−1K

′′.
Suppose that k11 ∈ o

×
E . Since k lies in G, one has J tkJk = e. Comparing (3, 1)-

entries, we have k11k31 + k21k21 + k31k11 = 0. This implies k11k31 + k31k11 =
−k21k21 ∈ p

2n−2
F , and hence k31k11 ∈ p

2n−2
F ⊕p

n−1
F

√
ε. By the assumption k11 ∈ o

×
E ,

we have k31k
−1
11 = (k11k11)

−1k31k11 ∈ p
2n−2
F ⊕ p

n−1
F

√
ε. So there exists x ∈ p

n−1
F

such that k31k
−1
11 −x

√
ε ∈ p

2n−2
F . Using the assumption again, we get k31−x

√
εk11 ∈

p
2n−2
E ⊂ pnE . This implies k ∈ û(0, x

√
ε)K ′′.

(ii) Let k ∈ K ′′. Then det k lies in E1 and is equivalent to k11k33 modulo pE .
Since k11, k33 ∈ oE , we have k11 ∈ o

×
E . Set y = k−1

11 k21. Then y lies in p
n−1
E . One

can easily check that k belongs to û(y,−yy/2)(Kn−1 ∩ (Zn−1Kn)). This completes
the proof. �

By Lemma 5.8, we get an explicit formula of the level lowering operator δ.

Lemma 5.9. Suppose that n ≥ 2 and n > nπ. Then we have

δv = v′ +
∑

y∈p
−1
E /oE

π(ζu(y,−yy/2))v,

for v ∈ V (n).

Proof. Due to (5.7) and Lemma 5.8, we get

δv =
∑

a∈p
n−1
E /pn

E

b∈p
n−1
F /pn

F

π(û(a, b
√
ε− aa/2))v +

∑
y∈p

n−1
E /pn

E

π(tn−1û(y,−yy/2))v.

Here the first sum is equal to v′ by (5.3). For the second sum, we use tn−1 = ζtn and
tnû(y,−yy/2)tn = u(−�−ny,−�−2nyy/2). Noting that π(tn)v = v, for v ∈ V (n),
we obtain

π(tn−1û(y,−yy/2))v = π(ζtnû(y,−yy/2)tn)v = π(ζu(−�−ny,−�−2nyy/2))v,

so that ∑
y∈p

n−1
E /pn

E

π(tn−1û(y,−yy/2))v =
∑

y∈p
n−1
E /pn

E

π(ζu(−�−ny,−�−2nyy/2))v

=
∑

y∈p
−1
E /oE

π(ζu(y,−yy/2))v.

This completes the proof. �

We consider the level lowering operator for n = Nπ. Since V (Nπ − 1) = {0}, we
have δv = 0 for all v ∈ V (Nπ). For a newform v in V (Nπ), we set ci and c′i as in
(5.5). Then we get another relation between ci and c′i.

Lemma 5.10. Suppose that Nπ ≥ 2 and Nπ > nπ. Then we have

c′i + q2ci+1 = 0, i ≥ 0,

c′−1 = 0.
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Proof. By Lemma 5.9 and δv = 0, we have

0 = Wδv(ζ
i) = Wv′(ζi) +

∑
y∈p

−1
E /oE

Wv(ζ
i+1u(y,−yy/2)),

for i ∈ Z. Note that ζi+1u(y,−yy/2)ζ−i−1 = u(�i+1y,−�2i+2yy/2), and hence
Wv(ζ

i+1u(y,−yy/2)) = Wv(ζ
i+1u(y,−yy/2)ζ−i−1ζi+1) = ψE(�

i+1y)Wv(ζ
i+1). So

we obtain

0 = Wv′(ζi) +Wv(ζ
i+1)

∑
y∈p

−1
E /oE

ψE(�
i+1y),

for i ∈ Z. Now the lemma follows from the assumption that ψE has conductor
oE . �

5.3. Zeta integrals of newforms. Let (π, V ) be an irreducible generic represen-
tation of G such that Nπ ≥ 2 and Nπ > nπ. For v ∈ V (Nπ), we set

ci = Wv(ζ
i), i ∈ Z.

Then we get a recursion formula for {ci}i∈Z.

Lemma 5.11. Suppose that Nπ ≥ 2 and Nπ > nπ. Then we have

(λ+ q2)ci = q4ci+1, i ≥ 1,

λc0 = q4c1.

Proof. The assertion follows from Lemmas 5.6 and 5.10. �

Now we get an explicit formula of zeta integrals of newforms in terms of Hecke
eigenvalues.

Proposition 5.12. Suppose that an irreducible generic representation (π, V )of G
satisfies Nπ ≥ 2 and Nπ > nπ. Then we have

Z(s,Wv) =
1− q−2s

1− λ+ q2

q2
q−2s

Wv(e),

for v ∈ V (Nπ), where λ is the eigenvalue of the Hecke operator T on V (Nπ).

Proof. Since v is fixed by t(b), b ∈ o
×
E , we get Wv(t(a)) = Wv(ζ

νE(a)), for a ∈ E×,
where νE is the valuation on E normalized so that νE(�) = 1. Proposition 2.4(i)
says that Wv(ζ

i) = 0 for all i < 0. So we have

Z(s,Wv) =

∫
E×

Wv(t(a))|a|s−1
E d×a =

∞∑
i=0

Wv(ζ
i)|�i|s−1

E =

∞∑
i=0

ciq
2i(1−s).
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By Lemma 5.11, we obtain ci+1 = (λ+q2

q4 )i λ
q4 c0, for i ≥ 0, and hence

Z(s,Wv) = c0 + c0
λ

q4

∞∑
i=0

(
λ+ q2

q4

)i

q2(i+1)(1−s)

= c0 + c0
λ

q2
q−2s

∞∑
i=0

(
λ+ q2

q2

)i

q−2is

= c0 + c0
λ

q2
q−2s 1

1− λ+ q2

q2
q−2s

=
c0(1− q−2s)

1− λ+ q2

q2
q−2s

.

This shows the proposition. �

6. Proof of Theorem 4.2

Now we shall prove Theorem 4.2. Let (π, V ) be an irreducible generic super-
cuspidal representation of G. By Theorem 2.2(iii), we can apply Proposition 5.12
to newforms for π. Due to Proposition 2.4(ii), we can take v ∈ V (Nπ) such that
Wv(e) = 1. For such v, we have

Z(s,Wv) =
1− q−2s

1− λ+ q2

q2
q−2s

.

It follows from the proof of Proposition 3.6 that Z(s,Wv) is a polynomial in q−2s and
q2s. Therefore we must have Z(s,Wv) = 1− q−2s or 1, and hence Z(s,Wv,ΦNπ

) =
Z(s,Wv)LE(s,1) = 1 or LE(s,1) by Proposition 3.5.

Suppose that Z(s,Wv,ΦNπ
) �= L(s, π). Then by Proposition 3.6, we must have

Z(s,Wv,ΦNπ
) = 1 and L(s, π) = LE(s,1). Thus, the functional equation

Z(1− s,Wv, Φ̂Nπ
)

L(1− s, π)
= ε(s, π, ψF , ψE)

Z(s,Wv,ΦNπ
)

L(s, π)

implies

q−2Nπ(s−1/2) 1

LE(1− s,1)
= ε(s, π, ψF , ψE)

1

LE(s,1)

because of Proposition 3.9. This contradicts Proposition 3.15, which states that
ε(s, π, ψF , ψE) is monomial. We therefore conclude that Z(s,Wv,ΦNπ

) = L(s, π).
This completes the proof of Theorem 4.2.
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