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On local newforms for unramified U(2, 1)

Michitaka Miyauchi (Osaka Prefecture University)

1 Introduction

Local newforms play an important role in the theory of automorphic representations.
Roughly speaking, a newform for an irreducible gencric representation 7 of a p-adic group
is a vector which attains the L-factor of 7 via Rankin-Selberg integral. The existence
of newforms was known only for GL(n) until the work of Roberts and Schmidt [11] for
GSp(4). In this note, we study newform theory for unramified U(2,1).

This note is a survey of the author’s work [6], [7], [9], [8] on newrofms for unramified
U(2,1). Let G denote the unramified unitary group in three variables defined over a p-
adic field of odd residual characteristic. Newforms for an irreducible generic representation
(7, V) of G is defined by using a family of open compact subgroups { K, }n>0 of G, which
is an analog of paramodular subgroups of GSp(4). For each non-negative integer n, we
denote by V(n) the space of K,-fixed vectors. The smallest integer such that V(n) is not
trivial is called the conductor of 7. We write N, for the conductor of 7, and call V(N,)
the space of newforms for 7. An algebraic structure of V(n) was studied in [6] and [9], for
example, the multiplicity one theorem for newforms and the dimension formula for V(n),
n > N,.

Our main concern is the relation of newforms and Rankin-Selberg factors. Gelbart
and Piatetski-Shapiro in [4] attached a family of Rankin-Selberg integrals to an irreducible
gencric representation 7 of G, and defined L and e-factors for 7. In loc. cit. they showed
that the spherical vector attains the L-factor of 7 when 7 is an unramified principal series
representation. But there were no results for ramified representations. In this note, we
establish a theory of newforms for Gelbart and Piatetski-Shapiro’s integral. We see that
(i) the newform for an irreducible generic representation 7 of G attains the L-factor of
(Theorem 4.1) (ii) the conductor of 7 coincides with the exponent of ¢=* of the e-factor,
where ¢ denotes the cardinality of the residue field (Theorem 4.3).

We summarize the contents of this paper. In section 2, we recall from [1] the theory
of Rankin-Selberg integral introduced by Gelbart, Piatetski-Shapiro and Baruch. In sec-
tion 3, we define newforms for G and recall their basic properties. In section 4, we show
Theorems 4.1 and 4.3 assuming Lemma 4.2, which is proved in section 5.



2 Rankin-Selberg integral

In this section, we recall from [1] the theory of Rankin-Selberg integral for U(2,1) intro-
duced by Gelbart, Piatetski-Shapiro and Baruch.

2.1 Notation

We use the following notation. Let F' be a non-archimedean local field of characteristic
zero, o its ring of integers, and pr the maximal ideal in 0. We fix a uniformizer wp in
F, and denote by | - |r the absolute value of F' normalized so that [wp| = g5', where g
is the cardinality of the residue field or/pr. Throughout this paper, we assume that the
characteristic of op/pr is different from two.

Let E = F[\/e] be the quadratic unramified extension over F, wherc /¢ is a non-
square unit in op. We denote by og, pg the analogous objects for E. Then wp is a
uniformizer of E, and the cardinality of og/pg is equal to ¢%. So we abbreviate w = wp
and g = gr. We realize (the group of F-points of) the unramified unitary group in three
variables defined over F as

G =U(2,1) = {g € GLy(E) | ‘gJg = J}.
Here we denotes by ~ the non-trivial element in Gal(E/F) and

0 01
J=1010
100

Let B be the upper triangular Borel subgroup of G, U its unipotent radical, and T
the group of the diagonal elements in GG. For a non-trivial additive character ¢ of E, we
also denote by ¥ the character of U defined by ¥g(u) = ¥g(ui2), for u = (u;;) € U. For
an irreducible generic representation (m, V) of G, we write W(r, ¥g) for the Whittaker
model of 7 associated to (U, ¥g).

2.2 Zeta integrals

Let C2°(F?) be the space of locally constant, compactly supported functions on F2. For an
irreducible generic representation (m, V) of G, Gelbart and Piatetski-Shapiro introduced
a family of zeta integrals which has the form Z(s, W, ®) (W € W(r,¢g), ® € C(F?))
as follows:

We identify the subgroup

H = ed

o o9
o = O
QU O o



of G with U(1, 1). Since SU(1,1) is isomorphic to SLy(F'), we can write any element A in
H as

o) (0B (F (),

where b € E* and hy € SLy(F). For & € C*(F?) and h € H, we define a function
f(s,h,®) on C by

fls:®) = bl [ S(O0hlrlpds

by using the decomposition of A in (2.1). We note that the definition of f(s,h,®) is
independent of the choices of b € E* and h; € SLy(F).

Set By = BN H and Uy = U N H. Then Uy is the unipotent radical of the Borel
subgroup By of H = U(1,1). For W € W(m,vg) and ® € C*(F?), we define zeta integral
Z(s, W, ®) by

Z(S,W@) = W(h)f(svh/q))dh’
Uy\H

Then Z(s, W, ®) absolutely converges to a function in C(q=2*) if Re(s) is sufficiently large.

2.3 L and e-factors

We recall the definition of L and e-factors attached to an irreducible generic representation
(m, V) of G. Set

L =(Z(s,W,®)|W € W(r,¢g),® € C°(F?), g : non-trivial).

Then I, is a fractional ideal of C[g~%, ¢®*] which contains 1. Thus, there exists a poly-
nomial P(X) in C[X] such that P(0) = 1 and I, = (1/P(¢g™%*)). We define the L-factor
L(s,m) of m by

L(s,7) =

P(g=%)

To define e-factor of 7, we recall the functional equation. Let ¢r be a non-trivial
additive character of F. For ® € C>(F?), we denote by ® its Fourier transform with
respect to ¥p. Then there exists (s, 7, ¥r, ¥g) € C(q~%*) which satisfies

7(8v7r7¢F7¢E)Z(57 VV,@) = Z(l - 37W7 i’)a
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for all W € W(m,vg) and ® € CX(F?).
By using the above functional equation, we define the e-factor (s, 7w, ¥ r, ¥g) of m by

L
E(Sv T, wFa wE) = 7(8a W,¢Fa wE)m(—fj;%,

where 7 is the contragradient representation of 7. By [7], we obtain L(s,7) = L(s,7),
and hence

L
(2.2) 6(&ﬂ3¢¢u¢E):=7C$“3wF’¢E)ZIIg?§%5'

Thus, we can show the following proposition by the standard argument:

Proposition 2.3. The e-factor e(s, 7, ¥r, V) is a monomial in ¢~%° of the form
6(‘9’ T, wF) wE) = :tq—Zn(s—l/Z)’

with somen € Z.

3 Newforms

In this section, we introduce a family of open compact subgroups of G, and define the
notion of newforms for irreducible generic representations of G. We summarize the basic
propertics of newforms for (7, which are an analog of thosc for GL(n) and GSp(4).

3.1 Newforms

Newforms for G are defined by the following open compact subgroups { K, }rn>0 of G. For
each non-negative integer n, we define an open compact subgroup K, of G by

o Og Pg"
Knon=1| pg 1+pz o |NG.
P Pr  Og

Remark 3.1. The definition of K, is inspired by the paramodular subgroups of GSp(4),
o op Pg"\

which is used in [11]. We also note that the group | p% 1+p% og is a conjugate
PE  PE  OE

of the subgroup of GL3(E) which is used to define newforms for GL3(E) in [5].
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For an irreducible generic representation (7, V) of G, we set
Vin)={veV|nlklv=v, k€ K,}, n>0.

Then it follows from [9] that there cxists a non-negative integer n such that V(n) is not
Z€ro.

Definition 3.2. We define the conductor of ™ by
N, = min{n > 0|V (n) # {0}}.

We call V(N;) the space of newforms for = and V (n) that of oldforms, for n > N,.

3.2 Basic properties of newforms

We recall some basic properties of newforms from [6] and [9]. Firstly, the growth of

dimensions of oldforms for gencric representations 7 is independent of 7, as in the cases
of GL{n) and GSp(4) (see [2], [10], [11]). The following dimension formula for oldforms
holds:

Proposition 3.3 ([6], [9]). Let (7,V) be an irreducible generic representation of G. For
n > N., we have

- N,
dimV(n) = [n 5 J + 1
In particular, V(N;) and V(N + 1) are one-dimensional.

Secondly, newforms for G are test vectors for the Whittaker functional. We say that
a function W in W(r, ¢g) is a newform if W is fixed by Ky_. The following proposition
is important to the application to the theory of zeta integral:

Proposition 3.4 ([6]). Suppose that the conductor of Vg is og. Then for all nonzero
newforms W in W(r,¥g), we have

W (1) #0.

3.3 Zeta integral of newforms

We apply newforms for G to the theory of zeta integral. We suppose that the conductor
of ¥ is op. One of the nice properties of the subgroups { K, }rn>o is that K, g = K,NH is
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a maximal compact subgroup of H for all n. Set T = TN H. Then we have an Iwasawa
decomposition H = UyTy K, g, for any n. There exists an isomorphism

a
t:EX ~Ty;a— 1

S]]

For W € W(r,vyg) and ® € C(F?), we obtain
Z(s, W, &) = / W (t(a)k) f (5, k, ®)[a|3 " dkd" .
x Kn,H

For n > 0, we denote by ®, the characteristic function of p% @ or. If W a newform
in W(m,v¥g), then we have

(35) Z(S, W, (I)Nﬂ) = VOl(Kn‘H)Z(S,W)LE(S,].).

Here Lg(s,1) =1/(1 — ¢=*) is the L-factor of the trivial representation of E* and
(3.6) Z(s,W) = W(t(a))|al ' d*a.
EX

We note that Proposition 3.4 implies that the integral Z(s, W) docs not vanish for any
non-zero newforms in W(m, ¥g).

If ¥ has conductor og, then we have @Nw = q‘N"choFEB -n~r, and hence

Pr
(3.7) Z(1 — s, W, by, ) = ¢ V271 — 5 W, 0p.)

by (3.5).

4 Main results

In this section, we show our two main theorems, which describe L and e-factors of irre-
ducible generic representations of G in terms of newforms and conductors.

4.1 L-factors and newforms

We show that zeta integrals of newforms attain L-factors. We normalize Haar measures
on £ and K, g so that the volumes of o}, and of K, g are onc respectively. Then the
following holds:
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Theorem 4.1 ([8]). Suppose that g has conductor og. Let m be an irreducible generic
representation of G and W the newform in W(rn,¢¥g) such that W(1) = 1. Then we have

Z(s,W,®y_) = L(s, ).
Theorem 4.1 is reduced to the following lemma:
Lemma 4.2. With the notation as above, we have
Z(s,W,®n,)/L(s,7) =1 or 1/Lg(s,1).
We postpone the proof of Lemma 4.2 to the next section.
Proof of Theorem 4.1. We further assume that v¢r has conductor op. Suppose that

Z(s,W,®n,)/L(s,m) = 1/Lg(s,1). Then by (2.2), we obtain

6(8,7’[’, ¢F; ,(pE) = FY(Sa T, wFa ’(/}E)%%

Z(1—s,W,dy ) L(s,)
Z(SaVVa@Nﬂ) L(l - S,?T)

—2N7(s=1/2) Lg(s,1)
LE(I - S, 1)

q

The last equality follows from (3.7). This contradicts Proposition 2.3 which implies that
e(s,m,%r,¥g) is monomial. Thus we get Z(s, W, ®x_) = L(s, ), as required. O

4.2 e-factors and conductors

We show that the exponent of ¢=2° of the e-factor of an irreducible generic representa-

tion 7 of G coincides with the conductor of 7. Applying the argument in the proof of
Theorem 4.1, we obtain the following:

Theorem 4.3 ([8]). Suppose that ¥ and Y have conductors op and op respectively.
For any irreducible generic representation = of G, we have

E(Sa T, wFa ¢E) = q—2N7r(S—l/2).

5 Proof of Lemma 4.2

In this section, we explain how to prove Lemma 4.2.
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5.1 Evaluation of L-factors

We shall evaluate L(s, ), for each irreducible generic representation (m,V) of G. The
L-factor L(s, ) is defined as the greatest common divisor of the zcta integrals Z (s, W, ®).
For W € W(r,¢g) and ® € CX(F?), there exist W; € W(m, ¢g) and ®; € CX(F?)
(1 <4 < m) such that

Z(s,W,®) = i Z(s,W;)f(s,1,9;).

By the theory of zeta integral for GL(1), we have
f(sa 1) Ql) € LE(S) 1)C[q_2s7 q28]'
Recall that we defined

Z(s W)= [ W(t(a)lald"a,
E’X
for W € W(r,¢¥g). To estimate Z(s, W), we can apply the theory of Kirillov model for
GL(2).

An irreducible generic representation of G is supercuspidal, or else a subrepresenta-
tion of a parabolically induced representation from B. The Levi component T of B is
isomorphic to E* x U(1). For a quasi-character p; of E* and a character py of U(1), we
denote by Indgul ® po the corresponding parabolically induced representation. According
to the classification of representations of G, we have the following evaluation of the shape
of L-factors:

Proposition 5.1. Let 7 be an irreducible generic representation of G.
(i) If 7 is supercuspidal, then L(s, ) divides Lg(s,1).
(ii) If m is a proper submodule of Ind§u; ® py, then L(s, ) divides Lg(s, p1)Lg(s,1).
(iti) If = Ind§pu, ® py, then L(s,7) divides Lp(s, u1)Lg(s, iy ) Le(s, 1).

5.2 Calculation of zeta integral of newforms

Let W be the newform in W(m, 1) such that W(1) = 1. We shall compute Z(s, W, ®y_).
Supposc that 7 has conductor zero. Then 7 = Ind§(p; ® 1), for some unramified quasi-
character y; of E*. In this case, ncwforms in W(m 1g) arc just spherical Whittaker
functions. In [4], Gelbart and Piatetski-Shapiro showed that

Z(s,W,®) = Lg(s, u1)Le(s, 57 ") Le(s, 1)
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by using Casselman-Shalika’s formula for spherical Whittaker functions in [3]. We there-
fore obtain Z(s, W, ®g) = L(s, 7) because of Proposition 5.1.
From now on, we assume that N is positive. By (3.5), we have

Z(s,W,®y_ )= Z(s,W)Lg(s,1),

and hence it is enough to compute Z(s, W). One can ecasily observe that
(52) Z(s,W) = / W (t(a)laly 'd*a =D W(t(w"))g" .
Bx i=0

So we shall give a recursion formula for W (¢(=*)), i > 0, in terms of two “Hecke eigen-
values” X and v. ‘

We abbreviate N = N,. Let us define the eigenvalue A. We define a level raising
operator ¢ : V(N) — V(N + 1) by

o = / r(kyvdk, v € V(N),
KN+1
and a level lowering operator § : V(N +1) — V(N) by
bw = / r(k)wdk, we V(N +1).
Kn
Since dim V(N) = 1, there exists A € C such that

v = 660,

for all v € V(N).
Next, we define the eigenvalue v. Put

We define the Hecke operator 7' on V(N + 1) by
Tv= / n(k)vdk, ve V(N +1).
Kn+1CKN+1

Because dim V(N + 1) = 1, there exists v in C such that
Tv = v,

for allv € V(N +1).
With the notation as above, we obtain the following recursion formula for W (t(=%)),
i>0.
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Proposition 5.3. Let (7, V) be an irreducible generic representation of G whose conduc-
tor N, is positive. For any newform W in W(r,¥E), we have
v+ = Nei +q(v +¢* = )iy = ¢Pcira, 020,

(v = ¢%)eo = g'cy,
where ¢; = W (t(w')), i > 0.

By (5.2) and Proposition 5.3, we can describe the zeta integral of newforms in terms
of A and v:

Proposition 5.4. Let (r,V) be an irreducible generic representation of G whose con-
ductor N, is positive and W its newform in W(m,vg) such that W(1) = 1. Then we
have

Z(s, W) Lo
s, = .

v+g" =g 5 v+

- ——q ™ - ———"yg
g q
In particular,
Z(s, W.dy.) = !
b ° Nn_l_y+q2__q3 25_V+q2_/\q_43
¢ q '

5.3 Proof of Lemma 4.2

We have seen that Lemma 4.2 holds for the unramified principal series representations.

Let 7 be an irreducible generic representation of G. We assume that N, is positive.
Proof of Lemma 4.2 is done by comparing Propositions 5.1 and 5.4. Suppose that = is
supercuspidal or a subrepresentation of Indg p1 ® o, for some ramified quasi-character
of E*. Then it follows from Proposition 5.1 that L(s,7) = 1 or Lg(s,1). By definition,
we have Z(s,W,®y_ )/L(s,m) € C[g~%,¢*]. So we get

Z(s,W,®y_)/L(s,m)=10r 1/Lg(s.1),

by Proposition 5.4.

Suppose that 7 is a subrepresentation of Indgul ® p2, for unramified p;. Then we can
regard newforms for 7 as functions in Ind%u; ® pg. Due to [6], non-zero newforms f in
satisfy f(1) # 0. By using this property of newforms, we can compute the eigenvalues v
and A cxplicitly, and Lemma 4.2 follows.
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