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On local newforms for unramified $U(2,1)$

Michitaka Miyauchi (Osaka Prefecture University)

1 Introduction
Local newforms play an important role in the theory of automorphic representations.
Roughly speaking, a newform for an irreducible generic representation $\pi$ of a $p$-adic group
is a vector which attains the $L$-factor of $\pi$ via Rankin-Selbcrg integral. The existence
of newforms was known only for $GL(n)$ until the work of Roberts and Schmidt [11] for
GSp(4). In this note, we study newform theory for unramified $U(2,1)$ .

This note is a survey of the author’s work [6], [7], [9], [8] on newrofms for unramified
$U(2,1)$ . Let $G$ denote the unramified unitary group in three variablcs defined over a p-
adic field of odd residual characteristic. Newforms for an irreducible generic representation
$(\pi, V)$ of $G$ is defined by using a family of open compact subgroups $\{K_{n}\}_{n\geq 0}$ of $G$ , which
is an analog of paramodular subgroups of GSp(4). For each non-negative integer $n$ , we
denote by $V(n)$ the space of $K_{n}$-fixed vectors. The smallest integer such that $V(n)$ is not
trivial is called the conductor of $\pi$ . We write $N_{\pi}$ for the conductor of $\pi$ , and call $V(N_{\pi})$

the space of newforms for $\pi$ . An algebraic structure of $V(n)$ was studied in [6] and [9], for
example, the multiplicity one theorem for newforms and the dimension formula for $V(n)$ ,
$n\geq N_{\pi}.$

Our main concern is the relation of newforms and Rankin-Selberg factors. Gelbart
and Piatetski-Shapiro in [4] attached a family of Rankin-Selberg integrals to an irreducible
generic representation $\pi$ of $G$ , and defined $L$ and $\epsilon$-factors for $\pi$ . In $loc.$ $cit$ . they showed
that the spherical vector attains the $L$-factor of $\pi$ when $\pi$ is an unramified principal series
representation. But there were no results for ramified representations. In this note, we
establish a theory of newforms for Gelbart and Piatetski-Shapiro’s integral. We see that
(i) the newform for an irreducible generic representation $\pi$ of $G$ attains thc $L$-factor of $\pi$

(Theorem 4.1) (ii) the conductor of $\pi$ coincides with the exponent of $q^{-s}$ of the $\epsilon$-factor,
where $q$ denotes the cardinality of the residue field (Theorem 4.3).

We summarize the contents of this paper. In section 2, we recall from [1] the theory
of Rankin-Selberg integral introduced by Gelbart, Piatetski-Shapiro and Baruch. In sec-
tion 3, we define newforms for $G$ and recall their basic properties. In section 4, we show
Theorems 4.1 and 4.3 assuming Lemma 4.2, which is proved in section 5.
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2 Rankin-Selberg integral
In this section, we recall from [1] the theory of Rankin-Selberg integral for $U(2,1)$ intro-
duced by Gelbart, Piatctski-Shapiro and Baruch.

2.1 Notation
We use the following notation. Let $F$ be a non-archimedean local field of characteristic
zero, $\mathfrak{o}_{F}$ its ring of integers, and $\mathfrak{p}_{F}$ the maximal ideal in $\mathfrak{o}_{F}$ . We fix a uniformizer $\varpi_{F}$ in
$F$ , and denote $0y|\cdot|_{F}$ thc absolute value of $F$ normalized so that $|\varpi_{F}|=q_{F}^{-1}$ , where $q_{F}$

is the cardinality of the residue field $\mathfrak{o}_{F}/\mathfrak{p}_{F}$ . Throughout this paper, we assume that the
characteristic of $\mathfrak{o}_{F}/\mathfrak{p}_{F}$ is different from two.

Let $E=F[\sqrt{\epsilon}]$ be the quadratic unranlified cxtension over $F$ , wherc $\sqrt{\epsilon}$ is a non-
square unit in $\mathfrak{o}_{F}$ . We denote by $\mathfrak{o}_{E},$ $\mathfrak{p}_{E}$ the analogous objects for $E$ . Then $\varpi_{F}$ is a
uniformizer of $E$ , and the cardinality of $\mathfrak{o}_{E}/\mathfrak{p}_{E}$ is equal to $q_{F}^{2}$ . So we abbreviate $\varpi=\varpi_{F}$

and $q=q_{F}$ . We realize (the group of $F$-points of) the unramified unitary group in three
variables defined over $F$ ae

$G=U(2,1)=\{g\in GL_{3}(E)|t\overline{g}Jg=J\}.$

Here wc dcnotes b$y^{-}$ the non-trivial element in Gal $(E/F)$ and

$J=(\begin{array}{lll}0 0 10 1 01 0 0\end{array})$

Lct $B$ be the upper triangular Borel subgroup of $G,$ $U$ its unipotent radical, and $T$

the group of thc diagonal elements in $G$ . For a non-trivial additive character $\psi_{E}$ of $E$ , we
also denote by $\psi_{E}$ the character of $U$ defined by $\psi_{E}(u)=\psi_{E}(u_{12})$ , for $u=(u_{ij})\in U$ . For
an irreducible generic representation $(\pi, V)$ of $G$ , we write $\mathcal{W}(\pi, \psi_{E})$ for the Whittaker
model of $\pi$ associated to $(U, \psi_{E})$ .

2.2 Zeta integrals
Let $C_{c}^{\infty}(F^{2})$ be the space of locally constant, compactly supported functions on $F^{2}$ . For an
irreducible generic representation $(\pi, V)$ of $G$ , Gelbart and Piatetski-Shapiro introduced
a family of zeta integrals which has the form $Z(s, W, \Phi)(W\in \mathcal{W}(\pi, \psi_{E}), \Phi\in C_{c}^{\infty}(F^{2}))$

as follows:
We identify thc subgroup

$H=\{(\begin{array}{lll}a 0 b0 1 0c 0 d\end{array})\in G\}$
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of $G$ with $U(1,1)$ . Since $SU$ (1, 1) is isomorphic to $SL_{2}(F)$ , we can write any element $h$ in
$H$ as

(2.1) $h=(0b \frac{0}{b}1)(0\sqrt{\epsilon}01)h_{1}(\sqrt{\epsilon}^{-1}0 01)$ ,

where $b\in E^{\cross}$ and $h_{1}\in SL_{2}(F)$ . For $\Phi\in C_{c}^{\infty}(F^{2})$ and $h\in H$ , we define a function
$f(s, h, \Phi)$ on $C$ by

$f(s, h, \Phi)=|b|_{E}^{s}\int_{F^{\cross}}\Phi((0, r)h_{1})|r|_{E}^{s}d^{\cross}r$

by using the decomposition of $h$ in (2.1). We note that the definition of $f(s, h, \Phi)$ is
independent of the choices of $b\in E^{\cross}$ and $h_{1}\in SL_{2}(F)$ .

Set $B_{H}=B\cap H$ and $U_{H}=U\cap H$ . Then $U_{H}$ is the unipotent radical of the Borel
subgroup $B_{H}$ of $H=U(1,1)$ . For $W\in \mathcal{W}(\pi, \psi_{E})$ and $\Phi\in C_{c}^{\infty}(F^{2})$ , we define zeta integral
$Z(s, W, \Phi)$ by

$Z(s, W, \Phi)=\int_{U_{H}\backslash H}W(h)f(s, h, \Phi)dh.$

Then $Z(s, W, \Phi)$ absolutely converges to a function in $C(q^{-2s})$ if ${\rm Re}(s)$ is sufficiently large.

2.3 $L$ and $\epsilon$-factors
We recall the definition of $L$ and $\epsilon$-factors attached to an irreducible generic representation
$(\pi, V)$ of $G$ . Set

$I_{\pi}=\langle Z(s, W, \Phi)|W\in \mathcal{W}(\pi, \psi_{E})_{7}\Phi\in C_{c}^{\infty}(F^{2}),$ $\psi_{E}$ : non-trivial $\rangle.$

Then $I_{\pi}$ is a fractional ideal of $C[q^{-2s}, q^{2s}]$ which contains 1. Thus, there exists a poly-
nomial $P(X)$ in $C[X]$ such that $P(O)=1$ and $I_{\pi}=(1/P(q^{-2s}))$ . We define the $L$ -factor
$L(s, \pi)$ of $\pi$ by

$L(s, \pi)=\frac{1}{P(q^{-2s})}.$

To define $\epsilon$-factor of $\pi$ , we recall the functional equation. Let $\psi_{F}$ be a non-trivial
additive character of $F$ . For $\Phi\in C_{c}^{\infty}(F^{2})$ , we denote by $\hat{\Phi}$ its Fourier transform with
respect to $\psi_{F}$ . Then there exists $\gamma(s, \pi, \psi_{F}, \psi_{E})\in C(q^{-2s})$ which satisfies

$\gamma(s, \pi, \psi_{F}, \psi_{E})Z(s, W, \Phi)=Z(1-s, W,\hat{\Phi})$ ,
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for all $W\in \mathcal{W}(\pi, \psi_{E})$ and $\Phi\in C_{c}^{\infty}(F^{2})$ .
By using the above functional equation, we define the $\epsilon$ -factor $\epsilon(s, \pi. \psi_{F}, \psi_{E})$ of $\pi$ by

$\epsilon(s, \pi, \psi_{F}, \psi_{E})=\gamma(s, \pi, \psi_{F}, \psi_{E})\frac{L(s,\pi)}{L(1-s,\tilde{\pi})},$

wherc ar is the contragradient representation of $\pi$ . By [7], we obtain $L(s, \tilde{\pi})=L(s, \pi)$ ,
and hence

(2.2) $\epsilon(s, \pi, \psi_{F}, \psi_{E})=\gamma(s, \pi, \psi_{F}, \psi_{E})\frac{L(s,\pi)}{L(1-s,\pi)}.$

Thus, we can show the following proposition by the standard argument:

Proposition 2.3. The $\epsilon$ -factor $\epsilon(s, \pi, \psi_{F}, \psi_{E})$ is a monomial in $q^{-2s}$ of the form
$\epsilon(s, \pi, \psi_{F}, \psi_{E})=\pm q^{-2n(s-1/2)},$

with some $n\in Z.$

3 Newforms
In this scction, we introduce a family of open compact subgroups of $G$ , and define the
notion of newforms for irrcducible generic representations of $G$ . We summarize thc basic
properties of newforms for $G$ , which are an analog of those for $GL(n)$ and GSp(4).

3.1 Newforms
Newforms for $G$ are defined by thc following open compact subgroups $\{K_{n}\}_{n\geq 0}$ of $G$ . For
each non-negative integer $n$ , we define an open compact subgroup $K_{n}$ of $G$ by

$K_{n}=(\begin{array}{lll}\mathfrak{o}_{E} \mathfrak{o}_{E} \mathfrak{p}_{E}^{-n}\mathfrak{p}_{E}^{n} 1+\mathfrak{p}_{E}^{n} \mathfrak{o}_{E}\mathfrak{p}_{E}^{n} \mathfrak{p}_{E}^{n} \mathfrak{o}_{E}\end{array})\cap G.$

Remark 3.1. The definition of $K_{n}$ is inspired by the paramodular subgroups of GSp(4),

which is used in [11]. We also note that the group $(\begin{array}{lll}\mathfrak{o}_{E} \mathfrak{o}_{E} \mathfrak{p}_{E}^{-n}\mathfrak{p}_{E}^{n} l+\mathfrak{p}_{E}^{n} \mathfrak{o}_{E}\mathfrak{p}_{E}^{n} \mathfrak{p}_{E}^{n} \mathfrak{o}_{E}\end{array})$ is a conjugate

of the subgroup of $GL_{3}(E)$ which is used to define newforms for $GL_{3}(E)$ in [5].
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For an irreducible generic representation $(\pi, V)$ of $G$ , we set

$V(n)=\{v\in V|\pi(k)v=v, k\in K_{n}\}, n\geq 0.$

Then it follows from [9] that there cxists a non-negative integer $n$ such that $V(n)$ is not
zero.

Definition 3.2. We define the conductor of $\pi$ by

$N_{\pi}= \min\{n\geq 0|V(n)\neq\{0\}\}.$

We call $V(N_{\pi})$ the space of newforms for $\pi$ and $V(n)$ that of oldforms, for $n>N_{\pi}.$

3.2 Basic properties of newforms
We recall some basic properties of newforms from [6] and [9]. Firstly, the growth of
dimensions of oldforms for generic representations $\pi$ is independent of $\pi$ , as in the cascs
of $GL(n)$ and GSp(4) (see [2], [10], [11]). The following dimension formula for oldforms
holds:

Proposition 3.3 ([6], [9]). Let $(\pi, V)$ be an irreducible generic representation of G. For
$n\geq N_{\pi}$ , we have

$\dim V(n)=\lfloor\frac{n-N_{\pi}}{2}\rfloor+1.$

In particular, $V(N_{\pi})$ and $V(N_{\pi}+1)$ are one-dimensional.

Secondly, newforms for $G$ are test vectors for the Whittaker functional. We say that
a function $W$ in $\mathcal{W}(\pi, \psi_{E})$ is a newform if $W$ is fixed by $K_{N_{\pi}}$ . The following proposition
is important to the application to thc theory of zeta integral:

Proposition 3.4 ([6]). Suppose that the conductor of $\psi_{E}$ is $\mathfrak{o}_{E}$ . Then for all nonzero
newforms $W$ in $\mathcal{W}(\pi, \psi_{E})$ , we have

$W(1)\neq 0.$

3.3 Zeta integral of newforms
We apply newforms for $G$ to the theory of zeta integral. We suppose that the conductor
of $\psi_{E}$ is $\mathfrak{o}_{E}$ . One of the nice properties of the subgroups $\{K_{n}\}_{n\geq 0}$ is that $K_{n,H}=K_{n}\cap H$ is
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a maximal compact subgroup of $H$ for all $n$ . Set $T_{H}=T\cap H$ . Then we have an Iwasawa
decomposition $H=U_{H}T_{H}K_{n,H}$ , for any $n$ . There exists an isomorphism

$t:E^{\cross}\simeq T_{H};a\mapsto(a 1 \overline{a}^{-1})$

For $W\in \mathcal{W}(\pi, \psi_{E})$ and $\Phi\in C_{c}^{\infty}(F^{2})$ , we obtain

$Z(s, W, \Phi)=\int_{E^{x}}\int_{K_{n,H}}W(t(a)k)f(s, k, \Phi)|a|_{E}^{s-1}dkd^{\cross}a.$

For $n\geq 0$ , we denote by $\Phi_{n}$ the characteristic function of $\mathfrak{p}_{F}^{n}\oplus \mathfrak{o}_{F}$ . If $W$ a newform
in $\mathcal{W}(\pi, \psi_{E})$ , then we have

(3.5) $Z(s, W, \Phi_{N_{\pi}})=vol(K_{n,H})Z(s, W)L_{E}(s, 1)$ .

Here $L_{E}(s, 1)=1/(1-q^{-2s})$ is the $L$-factor of the trivial represcntation of $E^{\cross}$ and

(3.6) $Z(s, W)= \int_{E^{\cross}}W(t(a))|a|_{E}^{s-1}d^{\cross}a.$

We note that Proposition 3.4 implies that the integral $Z(s, W)$ docs not vanish for any
non-zero newforms in $\mathcal{W}(\pi, \psi_{E})$ .

If $\psi_{F}$ has conductor $\mathfrak{o}_{F}$ , then we have $\hat{\Phi}_{N_{\pi}}=q^{-N_{\pi}}$ ch
$\mathfrak{o}_{F}\oplus \mathfrak{p}_{F}^{-N_{\pi}}$ ’ and hence

(3.7) $Z(1-s, W,\hat{\Phi}_{N_{\pi}})=q^{-2N_{\pi}(s-1/2)}Z(1-s, W, \Phi_{N_{\pi}})$

by (3.5).

4 Main results
In this section, we show our two main theorems, which describe $L$ and $\epsilon$-factors of irre-
ducible generic representations of $G$ in terms of newforms and conductors.

4.1 $L$-factors and newforms
We show that zeta integrals of newforms attain $L$-factors. We normalize Haar measures
on $E^{\cross}$ and $K_{n,H}$ so that the volumes of $\mathfrak{o}_{E}^{\cross}$ and of $K_{n,H}$ are onc respectively. Then the
following holds:
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Theorem 4.1 ([8]). Suppose that $\psi_{E}$ has conductor $\mathfrak{o}_{E}$ . Let $\pi$ be an irreducible generic
representation of $G$ and $W$ the newform in $\mathcal{W}(\pi, \psi_{E})$ such that $W(1)=1$ . Then we have

$Z(s, W, \Phi_{N_{\pi}})=L(s, \pi)$ .

Theorem 4.1 is reduced to the following lemma:

Lemma 4.2. With the notation as above, we have

$Z(s, W, \Phi_{N_{\pi}})/L(s, \pi)=1$ or $1/L_{E}(s, 1)$ .

We postpone the proof of Lemma 4.2 to the next section.

Proof of Theorem 4.1. We further assume that $\psi_{F}$ has conductor $\mathfrak{o}_{F}$ . Suppose that
$Z(s, W, \Phi_{N_{\pi}})/L(s, \pi)=1/L_{E}(s, 1)$ . Then by (2.2), we obtain

$\epsilon(s, \pi, \psi_{F)}\psi_{E}) = \gamma(s, \pi, \psi_{F}, \psi_{E})\frac{L(s,\pi)}{L(1-s,\pi)}$

$= \frac{Z(1-s,W,\hat{\Phi}_{N_{\pi}})}{Z(s,W,\Phi_{N_{\pi}})}\frac{L(s,\pi)}{L(1-s,\pi)}$

$= q^{-2N_{\pi}(s-1/2)} \frac{L_{E}(s,1)}{L_{E}(1-s,1)}.$

The last equality follows from (3.7). This contradicts Proposition 2.3 which implics that
$\epsilon(s, \pi, \psi_{F}, \psi_{E})$ is monomial. Thus we get $Z(s, W, \Phi_{N_{\pi}})=L(s, \pi)$ , as required. $\square$

4.2 $\epsilon$-factors and conductors
We show that the exponent of $q^{-2s}$ of the $\epsilon$-factor of an irreducible generic representa-
tion $\pi$ of $G$ coincides with the conductor of $\pi$ . Applying the argument in the proof of
Theorem 4.1, we obtain the following:

Theorem 4.3 ([8]). Suppose that $\psi_{E}$ and $\psi_{F}$ have conductors $\mathfrak{o}_{E}$ and $\mathfrak{o}_{F}$ respectively.
For any irreducible generic representation $\pi$ of $G$ , we have

$\epsilon(s, \pi, \psi_{F}, \psi_{E})=q^{-2N_{\pi}(s-1/2)}.$

5 Proof of Lemma 4.2
In this section, we explain how to prove Lemma 4.2.
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5.1 Evaluation of $L$-factors
We shall evaluate $L(s, \pi)$ , for each irreduciblc generic representation $(\pi, V)$ of $G$ . The
$L$-factor $L(s, \pi)$ is defined as the greatest common divisor of the zeta integrals $Z(s, W, \Phi)$ .
For $W\in \mathcal{W}(\pi, \psi_{E})$ and $\Phi\in C_{c}^{\infty}(F^{2})$ , there exist $W_{i}\in \mathcal{W}(\pi, \psi_{E})$ and $\Phi_{i}\in C_{c}^{\infty}(F^{2})$

$(1\leq i\leq m)$ such that

$Z(s, W, \Phi)=\sum_{i=1}^{m}Z(s, W_{i})f(s, 1, \Phi_{i})$ .

By the theory of zeta integral for $GL$ (1), we have

$f(s, 1, \Phi_{i})\in L_{E}(s, 1)C[q^{-2s}, q^{2s}].$

Recall that we defined

$Z(s, W)= \int_{E^{x}}W(t(a))|a|_{E}^{s-1}d^{\cross}a,$

for $W\in \mathcal{W}(\pi, \psi_{E})$ . To estimate $Z(s, W)$ , we can apply thc theory of Kirillov model for
$GL$ (2).

An irreducible gcneric representation of $G$ is supercuspidal, or else a subrepresenta-
tion of a parabolically induced representation from $B$ . The Levi component $T$ of $B$ is
isomorphic to $E^{\cross}\cross U(1)$ . For a quasi-character $\mu_{1}$ of $E^{\cross}$ and a character $\mu_{2}$ of $U(1)$ , we
denote by $Ind_{B}^{G}\mu_{1}\otimes\mu_{2}$ the corresponding parabolically induced representation. According
to the classification of representations of $G$ , we have the following evaluation of the shape
of $L$-factors:

Proposition 5.1. Let $\pi$ be an irreducible generic representation of $G.$

(i) If $\pi$ is supercuspidal, then $L(s, \pi)$ divides $L_{E}(s, 1)$ .
(ii) If $\pi$ is a proper submodule of $Ind_{B}^{G}\mu_{1}\otimes\mu_{2}$ , then $L(s, \pi)$ divides $L_{E}(s, \mu_{1})L_{E}(s, 1)$ .
(iii) If $\pi=Ind_{B}^{G}\mu_{1}\otimes\mu_{2}$ , then $L(s, \pi)$ divides $L_{E}(s, \mu_{1})L_{E}(s, \overline{\mu}_{1}^{-1})L_{E}(s, 1)$ .

5.2 Calculation of zeta integral of newforms
Lct $W$ be the newform in $\mathcal{W}(\pi, \psi_{E})$ such that $W(1)=1$ . We shall compute $Z(s, W, \Phi_{N_{\pi}})$ .
Supposc that $\pi$ has conductor zero. Then $\pi=Ind_{B}^{G}(\mu_{1}\otimes 1)$ , for some unramified quasi-
character $\mu_{1}$ of $E^{\cross}$ In this case, ncwforms in $\mathcal{W}(\pi, \psi_{E})$ arc just spherical Whittaker
functions. In [4], Gelbart and Piatetski-Shapiro showed that

$Z(s, W, \Phi_{0})=L_{E}(s, \mu_{1})L_{E}(s,\overline{\mu}_{1}^{-1})L_{E}(s, 1)$
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by using Casselman-Shalika’s formula for spherical Whittaker functions in [3]. We there-
fore obtain $Z(s, W, \Phi_{0})=L(s, \pi)$ because of Proposition 5.1.

From now on, we assume that $N_{\pi}$ is positive. By (3.5), we have

$Z(s, W, \Phi_{N_{\pi}})=Z(s, W)L_{E}(s, 1)$ ,

and hence it is enough to compute $Z(s, W)$ . One can easily observe that

(5.2) $Z(s, W)= \int_{E^{\cross}}W(t(a))|a|_{E}^{s-1}d^{\cross}a=\sum_{i=0}^{\infty}W(t(\varpi^{i}))q^{2i(1-s)}.$

So we shall give a recursion formula for $W(t(\varpi^{i})),$ $i\geq 0$ , in terms of two “Hecke eigen-
values” $\lambda$ and $v.$

We abbreviate $N=N_{\pi}$ . Let us define the eigenvalue $\lambda$ . We define a level raising
operator $\theta’:V(N)arrow V(N+1)$ by

$\theta’v=\int_{K_{N+1}}\pi(k)vdk, v\in V(N)$ ,

and a level lowering operator $\delta$ : $V(N+1)arrow V(N)$ by

$\delta w = \int_{K_{N}}\pi(k)wdk, w\in V(N+1)$ .

Since $\dim V(N)=1$ , there exists $\lambda\in C$ such that

$\lambda v=\delta\theta’v,$

for all $v\in V(N)$ .
Next, we define the eigenvalue $v$ . Put

$\zeta=(\varpi 1 \varpi^{-1})\in G.$

We define the Hecke operator $T$ on $V(N+1)$ by

$Tv= \int_{K_{N+1}\zeta K_{N+1}}\pi(k)vdk, v\in V(N+1)$ .

Because $\dim V(N+1)=1$ , there exists $v$ in $C$ such that

$Tv=vv,$

for all $v\in V(N+1)$ .
With the notation as above, we obtain the following recursion formula for $W(t(\varpi^{i}))$ ,

$i\geq 0.$
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Proposition 5.3. Let $(\pi, V)$ be an irreducible generic representation of $G$ whose conduc-
tor $N_{\pi}$ is positive. For any newform $W$ in $\mathcal{W}(\pi, \psi_{E})$ , we have

$(\nu+q^{2}-\lambda)q+q(v+q^{2}-q^{3})q_{+1}=q^{5_{C_{i+2}}}, i\geq 0,$

$(v-q^{3})c_{0}=q^{4}c_{1},$

where $c_{\eta}=W(t(\varpi^{i})),$ $i\geq 0.$

By (5.2) and Proposition 5.3, we can describe thc zeta integral of newforms in tcrms
of $\lambda$ and $\nu$ :

Proposition 5.4. Let $(\pi, V)$ be an irreducible generic representation of $G$ whose con-
ductor $N_{\pi}$ is positive and $W$ its newform in $\mathcal{W}(\pi, \psi_{E})$ such that $W(1)=1$ . Then we
have

$Z(s, W)= \frac{1-q^{-2s}}{1-\frac{\nu+q^{2}-q^{3}}{q^{2}}q^{-2s}-\frac{v+q^{2}-\lambda}{q}q^{-4s}}.$

In particular,

$Z(s, W. \Phi_{N_{\pi}})=\frac{1}{1-\frac{\nu+q^{2}-q^{3}}{q^{2}}q^{-2s}-\frac{v+q^{2}-\lambda}{q}q^{-4s}}.$

5.3 Proof of Lemma 4.2
We have seen that Lemma 4.2 holds for the unramified principal series representations.

Let $\pi$ be an irreducible generic representation of $G$ . We assume that $N_{\pi}$ is positive.
Proof of Lemma 4.2 is done by comparing Propositions 5.1 and 5.4. Suppose that $\pi$ is
supercuspidal or a subrepresentation of $Ind_{B}^{G}\mu_{1}\otimes\mu_{2}$ , for some ramified quasi-character $\mu_{1}$

of $E^{\cross}$ . Then it follows from Proposition 5.1 that $L(s, \pi)=1$ or $L_{E}(s, 1)$ . By definition,
we have $Z(s, W, \Phi_{N_{\pi}})/L(s, \pi)\in C[q^{-2s}, q^{2s}]$ . So we get

$Z(s, W, \Phi_{N_{\pi}})/L(s, \pi)=1or1/L_{E}(s. 1)$ ,

by Proposition 5.4.
Suppose that $\pi$ is a subrepresentation of $Ind_{B}^{G}\mu_{1}\otimes\mu_{2}$ , for unramified $\mu_{1}$ . Then we can

regard newforms for $\pi$ as functions in $Ind_{B}^{G}\mu_{1}\otimes\mu_{2}$ . Due to [6], non-zero newforms $f$ in $\pi$

satisfy $f(1)\neq 0$ . By using this property of newforms, we can compute the eigenvalues $\nu$

and $\lambda$ explicitly, and Lemma 4.2 follows.
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