
LECTURE 9 — EULERIAN INTEGRAL REPRESENTATIONS

TALK BY DUC NAM NGUYEN

Abstract. We introduce the Rankin-Selberg integral representations of L-functions of
automorphic forms, generalizing the integral representation of the Riemann zeta func-
tion. This representations allows to uncover the key properties of L-functions: they
extend meromorphically on the whole complex plane, are bounded in vertical strips and
satisfy a function equation relating s and 1− s.

Let k be a number field. Let (π, Vπ) (resp (π′, Vπ′)) be a cuspidal automorphic represen-
tation of GLn(A) (resp. GLm(A)). The aim of this talk is to describe how to define the
Eulerian integrals I(s, π, π′) for s ∈ C, and how they relate to the attached L-functions
L(s, π × π′).

1. Case GL2 ×GL1

This is the case n = 2 and m = 1. Let (π, Vπ) be a cuspidal automorphic representation
of GL2(A). Let χ : A×/k× → C× a Hecke character.

To a cuspidal modular form f and for <(s) large enough, we attach the associated
L-function that may be defined as

L(s, f) =

∫ ∞
0

f(iy)ys
dy

y
. (1)

Replacing f by its Fourier expansion
∑
ane(nz), we recover the classical definition as the

Dirichlet series
L(s, f) =

∑
n>1

an
ns
. (2)

It is possible to attach such an L-function to a cuspidal automorphic representation
(πf , Vf ) of GL2(A) (more precisely to its automorphic adelization φf ). The above indeed
rewrites

L(s, f) =

∫ ∞
0

f

((
y

1

)
i

)
︸ ︷︷ ︸

=φf

(
y

1

)
ys

dy

y
. (3)

Define more generally, for any cuspidal φ ∈ Vπ,

I(s, φ, χ) =

∫
k×\A×

φ

(
a

1

)
χ(a)|a|s−

1
2 d×a. (4)
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Proposition. The integral I(s, φ, χ) satisfies the following properties:

• I(s, φ, χ) is absolutely convergent for <(s) large enough, and admits a holomorphic
continuation to the whole complex plane
• I(s, φ, χ) it is bounded in vertical strips
• We have the functional equation

I(s, φ, χ) = I(1− s, φ̃, χ−1) (5)

where φ̃(g) = φ(tg−1) =: φ(gι).

Consider the tensor product decomposition π ' ⊗′vπv, and under this isomorphism
φ 7→ ⊗vφv. But then, even though φ is not really decomposable, the Whittaker model is
(cf. previous lecture) and we can write Wφ(g) =

∏
vWφv(gv) for all g ∈ GL2(A).

Replacing φ by its Fourier transform we get

Φ(g) =
∑
γ∈k

Wφ

((
γ

1

)
g

)
(6)

so the zeta integral above rewrites

I(s, φ, χ) =
∑
γ∈k×

∫
k×\A×

Wφ

(
γa

1

)
χ(a)|a|s−1/2d×a (7)

but we notice that |a| = |γa| and χ(a) = χ(aγ) since γ ∈ k×, so we obtain

I(s, φ, χ) =

∫
A×

Wφ

(
a

1

)
χ(a)|a|s−1/2d×a. (8)

By the above factorization, this splits into

I(s, φ, χ) =
∏
v

∫
kv

Wξv

(
av

1

)
χv(av)|av|s−1/2d×av =:

∏
v

Zπ(s,Wξv , χv) (9)

for <(s) large enough. Hence, the global zeta integral I(s, φ, χ) splits into a Euler product
of “local zeta integrals”.

2. GLn ×GLn for m < n

Let m < n. Let φ be a cusp form in a cuspidal automorphic representation (π, Vπ)
of GLn(A) and φ′ be a cusp form in a cuspidal automorphic representation (π′, Vπ′) of
GLm(A). Consider the maximal unipotent subgroup

Nk =

(
1 ?

1

)
⊂ GLk (10)

and the mirabolic subgroup

Pk =

(
? ?
0 1

)
(11)

where the top left ? is in Mn−1. Introduce then

Y =

(
Im+1 ?

0 x

)
⊂ Nn (12)

for x ∈ Nn−m−1. Define then, for φ ∈ Vπ and ψ an additive character of k\A, a projection
Pφ : Pm+1(A)→ C by

Pφ(p) : |det p|−
n−m−1

2

∫
[Y ]
φ

(
y

(
P 0
0 In−m−1

))
ψ−1(y)dy. (13)
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Note that, for m = n−1, the projection is merely the restriction map to Pn. We recover
what happened in the previous cas GL2×GL1 (or more generally on GLn×GLn−1): the
integrand is simply the product of both automorphic forms.

Question. Why is the n = m case of Rankin-Selberg different? Where is the crux of
m < n, where do we see its effect? The crux is that if we define the Eulerian integral by∫

GLn(k)\GLn(A)
φ(g)φ′(g)|detg|sdg

for φ ∈ Vπ ⊂ A0(GLn) and φ′ ∈ Vπ′ ⊂ A0(GLn), then, besides the convergence issues,
would give an invariant pairing and would be zero unless π̃ ∼= π′ ⊗ |det|s.

Proposition. The projection Pφ is left-invariant under Pm−1(k) and cuspidal on Pm+1(A)
(for all relevant unipotents). Moreover, we have the Fourier expansion

Pφ
(
h

1

)
= | deth|−

n−m−1
2

∑
γ∈Nm(k)\GLm(k)

Wφ

(
γh

In−m

)
. (14)

For φ ∈ Vπ (on GLn), we then have a map Pφ : Pm−1(A)→ C. We set

I(s, φ, φ′) =

∫
GLm(k)\GLm(A)

Pφ
(
h

1

)
φ′(h)| deth|s−

1
2 dh. (15)

Proposition. The integral I(s, φ, φ′) satisfies the following properties:

• I(s, φ, φ′) is convergent for Re(s)� 1, and admits a holomorphic continuation to
the whole complex plane
• I(s, φ, φ′) is bounded in vertical strips
• We have the functional equation

I(s, φ, φ′) = Ĩ(1− s, φ̃, φ̃′) (16)

where φ̃(g) = φ(gι) and Ĩ is a “tilded version of I”.

Now consider factorizations of π and π′ (more precisely, up to isomorphism, or truly
for their Whittaker models). Then for <(s) large enough we have

I(s, φ, φ′) =
∏
v

Zv(s,Wφv ,Wφ′v) (17)

where the local integrals are given by (the global integral is the same thing with A’s)

Zv(s,Wφv ,Wφ′v) =

∫
Nm(kv)\GLm(kv)

Wv

(
hv

In−m

)
W ′v(hv)| dethv|

s−n−m
2

v dhv. (18)

Question. Write the computation of top page 40 of Cogdell. The W ′φ does not come
from the Fourier expansion, but from a change of variables and by definition. This is very
interesting.

3. GLn ×GLn

Here we do need to weight by an extra Schwartz-Bruhat function Φ ∈ S(An). Assume
it decomposes as a restricted tensor product ⊗′vΦv. On Archimedean places, Φv is smooth
(i.e. C∞) and rapidly decreasing, while at finite places Φv is smooth (locally constant)
and compactly supported.
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Introduce the theta series, for η a Hecke character,

Θφ(a, g) =
∑
ξ∈kn

Φ(aξg) (19)

for a ∈ k× and g ∈ GLn(A). Define the Eisenstein series

E(g, s) = E(g, s, φ, η) = |det g|s
∫
k×\A×

Θ′Φ(a, g)η(a)|a|nsd×a (20)

where Θ′Φ = ΘΦ−Φ(0). We removed the singularity of ΘΦ here, so that each term in the
sum is rapidly decreasing, and this fact ensures convergence of the integral below (exactly
as it happens for the classical Riemann zeta function). The basic analytic properties of
this Eisenstein series are the following.

Proposition. i) E(g, s) ∈ A∞(η−1), i.e., E(g, s) is a smooth automorphic form on
GLn(A) of central character η−1.

ii) E(g, s) extends to a meromorphic function of s with at most simple poles at s = iσ
and s = 1 + iσ with σ ∈ R such that η(a) = |a|−inσ,

iii) E(g, s) is bounded in vertical strips away from its poles.
iv) E(g, s) satisfies a functional equation

E(g, s,Φ, η) = E(gι, 1− s, Φ̂, η−1),

where gι = tg−1 and Φ̂ is the Fourrier transform of Φ.

Introduce then

I(s, φ, φ′,Φ) =

∫
Zn(A)GLn(k)\GLn(A)

φ(g)φ′(g)E(g, s,Φ, ωπωπ′)dg. (21)

Proposition. The integral I(s, φ, φ′,Φ) satisfies the following properties:

• I(s, φ, φ′,Φ) is convergent for Re(s)� 1, and admits a meromorphic continuation
to the whole complex plane with at most simple poles (totally understood).
• I(s, φ, φ′,Φ) is bounded in vertical strips
• We have the functional equation

I(s, φ, φ′,Φ) = Ĩ(1− s, φ̃, φ̃′, Φ̂) (22)

where φ̃(g) = φ(gι), Ĩ is a “tilded version of I” and Φ̂ is a transform of Φ.

We then have

I(s, φ, φ′,Φ) =
∏
v

Zv(s,Wφv ,Wφ′v ,Φv) (23)

where, letting en = (0, . . . , 0, 1) ∈ kn,

Zv(s,Wv,W
′
v,Φv) =

∫
N(kv)\GLn(kv)

Wv(gv)W
′
v(gv)Φ(engv)| det gv|svdgv. (24)

So we also have a splitting in a Euler product in this case.

4. L-functions

In all the cases above, we defined a famile of global integrals (I(s, φ, φ′,Φ))φ,φ′,Φ and
correspond families of local integrals (Zv(s,Wv,W

′
v,Φv))Wv ,W ′v ,Φv .

The crux is that, for almost all places (the finite ones), the family of such Zv(s,Wv,W
′
v,Φv)

are all rational functions of q−sv , and they admit a common denominator. They form in
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particular a fractional ideal of C(q−sv ), and by principaly they admit a generator. A gen-
erator can be chosen by normalizing it so that it is of the form P (q−sv )−1 with P ∈ C[X]
with P (0) = 1. We denote

L(s, πv × π′v) := P (q−sv )−1 (25)

this generator, and call it the L-function attached to πv × π′v. We set in particular

L(s, πv) = L(s, πv × χ0) (26)

where χ0 is the trivial character on k×v . These notions of L-functions do not (unlike a
priori the zeta integrals defined all along this lecture) depend on any specific choices of
cusp forms φv, φ

′
v or on test-functions Φv.

These local L-functions can be put back together to define a global L-function, and
this one can then be related to the global zeta integrals defined above. The good analytic
properties of the (local or global) L-functions can then be straightforwardly deduced from
the properties of the zeta integrals.


