
LECTURE 7 — ARCHIMEDEAN ASPECT AND (g,K)-MODULES

TALK BY NICOLE RAULF

Abstract. In this talk we will consider the relation between representation theory and the classical
theory of automorphic forms. We will review the basic ideas of Lie theory needed to treat the
spectral decomposition in the cocompact case. If time permits we will also introduce (g,K)-modules
to avoid analytic problems.

Let (π, h) a representation of the group G, that is to say

π : G −→ End(h) (1)

and so that the map (g, f) ∈ G × h 7→ π(g)f is continuous. If h is a Hilbert space and π(g) is a
unitary operator for all g ∈ G, the representation is called unitary.

This suffices to study L2(Γ\G,χ) (basically the space of automorphic forms) in the compact
case, i.e. when Γ\G is compact. However, in the noncompact case there is a continuous part of
the spectrum and there are important non-unitary representations (coming from the Eisenstein
series). This is where the (g,K)-modules appear. The algebraic point of view of this theory has
been developped by Harish-Chandra: the spirit is to mimic what we are able to do in the compact
setting, typically by restricting to compact subgroups.

From now on let G = GLn(R) or GLn(R)+. Let (π, h) a representation of G on the Hilbert
space h. We would like to get from it a representation of g = gln(R), which is not obvious if h is
infinite-dimensional.

Let X ∈ g. We want to define what Xf := π(X)f . These X will be seen as a differential
operator. We let

Xf =
d

dt
(π(exp(tX))) f|t=0 = lim

t→0

π(exp(tX))f − f
t

(2)

if this limit exists.

We say that f ∈ h is C1 is the limit exists. Then g 7→ π(g)Xf is automatically continuous.
Functions in the Ck class are defined as usual, inductively. Define h∞ be the space of smooth
vectors, i.e. the subspace of C∞ functions of h. This defines a Lie algebra representation of g
on h∞, that is we have the relation

[X,Y ]f = X(Y f)− Y (Xf) (3)

for all X,Y ∈ g. In other words, the representation ρ : X ∈ g 7→ X· ∈ GL(h) satisfies

ρ([X,Y ]g) = ρ(X)ρ(Y )− ρ(Y )ρ(X) = [ρ(X), ρ(Y )]GL. (4)
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The space h∞ is invariant under the action of G. Then we automatically have an action of the
universal enveloping Lie algebra U(g) on h∞. This algebra U(g) can be thought of as the algebra
of all differential operators, while g only contains first order differential operators.

We now specialize on the right-regular representation of G. For f defined on G, for X ∈ g, define

(dXf)(g) =
d

dt
f(g exp(tX))|t=0 (5)

the “partial derivative in the direction of X”. Then f is smooth if and only if dX1 ◦dX2 ◦· · ·◦dXnf
exists and is continuous for all Xi’s. Restricting from now on to smooth vectors is not totally crazy:
h∞ is dense in h.

Let’s decompose (π, h) is we restrict to a maximal compact subgroup K of G. Then (by averaging
over K) there is a Hermitian inner product on h such that

〈π(K)u, π(K)v〉 = 〈u, v〉, ∀u, v ∈ h. (6)

Let (π1, h1) and (π2, h2) be two representations of G. We say that L : h1 → h2 is an intertwining
operator if L is a linear continuous map and

π2(g) ◦ L = L ◦ π1(g), ∀g ∈ G. (7)

A matrix coefficient of a representation (π, h) of G is a function of the form g 7→ 〈π(g)x, y〉 for
some choice of x, y ∈ h.

The relation between reprensetations of G and K is given by the Peter-Weyl theorem.

Theorem. (Peter-Weyl) Let K be a compact subgroup of GLn(C).

• The matrix coefficients of finite-dimensional unitary representations of K are dense in C(K)
(space of continuous functions endowed with the L∞-topology) and in all the Lp(K) for
indices 1 6 p <∞.
• Any irreducible representation of K is finite-dimensional.
• If (π, h) is a unitary representation of K, then h decomposes into a direct sum of irreducible

unitary representations.

A representation (π, h) is called admissible if each isomorphism class of finite-dimensional unitary
representation of K appears only finitely many times in π. This is essentially a finite-dimensional
assumption (finitely-many pieces of inite dimension appearing in π). The admissible representations
are the ones of interest to us (and the study of representations essentially boils down to it, by e.g.
Langlands classification). From now on, all representations considered will be representations on
G that are irreducible and K-admissible.

Let hK be the space of K-fixed vectors in h, i.e.

hK = {h ∈ h : π(k)v = v, ∀v ∈ h} . (8)

It is closed and invariant under C∞c (K\G/K). The action is defined by averaging the action of G,
weighted by f :

π(f)v =

∫
G
f(g)π(g)dg. (9)

By admissibility, hK is a finite-dimensional vector space. In fact we can show that the dimension
is at most one.

Let (π, h) be an admissible representation of G. Assume that the restriction of π to K is unitary.
Let σ be an isomorphism class of irreducible representation of K, and let h(σ) be the sum of
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all irreducible invariant subspaces of h that are isomorphic to σ. Then we have the “K-isotypic
decomposition”

h =
⊕̂

σ∈K̂
h(σ) (10)

where the direct sum is a Hilbert direct sum. Since π is admissible, the dimension of each h(σ) is
finite. Let hfin be those vectors whose projections to only a finite number of h(σ) is nonzero (i.e.
the algebraic direct sum). The elements of hfin are called K-finite.

Introduce k the Lie algebra of K (skew-symmetric matrices). There is an equivalence between,
for f ∈ h,

• f is K-finite
• 〈π(k)f : k ∈ K〉 is finite-dimensional
• 〈Xf : X ∈ k〉 is finite-dimensional

The K-finite vectors are smooth, and hfin is dense in h∞ (and thus in h) and invariant under the
action of g on h∞.

(g,K)-modules

We will look at the definition in the case of G = GLn(R) (and K = On) or G = GLn(R)+ (and
K = SOn). A (g,K)-module is a vector space endowed with a representation (π, V ) of K and g
such that

• V decomposes into an algebraic direct sum of finite-dimensional K-invariant subspaces
• the actions of g and K are compatible:

Xf = lim
t→0

1

t
(π(exp(tX))f − f) (11)

for f ∈ V and X ∈ k
• π(g)π(X)π(g−1)f = π(Ad(g)X)f for all g ∈ K and X ∈ k.

Moreover, we say that V is K-finite if no K-invariant subspace arise with infinite multiplicity.

(g,K)-modules for GL(2,R)

The definition is a special case of the above. From now on, let G = GL(2,R)+ and K = SO(2).
Let V be a (g,K)-module, denote the action ok K on V by π as usual. We know that we can
decompose

V =
⊕
σ

V (σ) (12)

where V (σ) is the σ-isotypic component of V . Since V is a (g,K)-module, the V (σ) are finite-
dimensional.

Extend the action on g to an action of the envelopping algebra U(g). Since V is a complex vector
space, calculations are done in U(gC). Consider V is an irreducible admissible (g,K)-module for G
and D ∈ Z(U(gC)) (a differential operator) in the center of the envelopping complexified algebra.
Then there exists a constant λ such that

Dx = λx, ∀x ∈ V. (13)

Indeed, the commuting action of Z on each V (σ) leads to a λσ and the above equation only on
Vσ, and by irreducibility of V these λσ are all the same, so that the equation holds on all V .
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In this situation G/K has dimension 2 so that there are two differential operators as expected:
∂x and ∂y. We have K ' R/Z so that irreducible representations of K are given by σk(Kθ) := eikθ,
where Kθ is the usual rotation matrix of angle θ. Then we can simply write

V =
⊕
k

V (k) (14)

where V (k) is the σk-type.

Let Σ be the set of integers k such that V (k) 6= 0, i.e. the K-types (genuinely occurring in V ).

V (k) is the space of all x ∈ V that have eigenvalue k, i.e. Hx = kx, where H = −i
(

0 1
−1 0

)
. This

can be written down explicitly, cf. Bump. For x ∈ V (k), there are elements Rx ∈ V (k + 2) (level
raising operator) and Lx ∈ V (k− 2) (level lowering operator). The operators R and L are element
of the Lie algebra. More explicitly, they are given by

R =
1

2

(
1 i
i −1

)
and L =

1

2

(
1 −i
−i −1

)
. (15)

These operators can be written as classical differential operators in terms of ∂x and ∂y. Note
that it is known that the center is always described as a polynomial algebra in some elements. In
this case of GL(2), there is only one (the Casimir, which is the usual Laplacian), but for GL(3)
there are already two.

Let X be a nonzero element in V (k), then Cx = V (k) and CRnx = V (k + 2n) and CLnx =
V (k − 2n). We deduce the decomposition

V = Cx⊕
⊕
n>0

CRnx⊕
⊕
n>0

CLnx. (16)

Indeed, since g is generated by H,L,R, the above sum is the g-module generated by x, which by
irreducibility has to be the whole V . We moreover have that dimV (k) 6 1, and all the K-types k
have same parity.

We are now aiming at giving a description of all the (g,K)-modules in this case. Define the
Laplace operator by

−4∆ = H2 − 22RL+ 2RL. (17)

If λ is an eigenvalue of ∆ on V , x an eigenfunction and x ∈ V (k), then

LRx = (−λ− k

2
(1 +

k

2
))x (18)

since such a scalar exists by one-dimensionality, and then can be computed. We have a similar
formula for RLx.

If a (g,K)-module exists, then it is unique. Let k > 1 and λ of the form k
2 (1 − k

2 ) and V
irreducible admissible (g,K)-module with the same parity as k. Then the set of integers is among
the three following families (maybe only when λ is of this form above, otherwise it corresponds to
Maass forms, see Bump)

• Σ+(k) = {` ∈ Z : l ≡ k mod 2, ` > k}
• Σ−(k) = {` ∈ Z : l ≡ k mod 2, ` 6 −k}
• Σ0(k) = {` ∈ Z : −k < ` < k}

Then we can show that these objects do exist (either by making them explicit, or by considering
the representation theory of GL(2)), so we have described them all.

[Do a drawing of the series. ]
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