
LECTURE 3 — CLASSIFICATION OF REPRESENTATIONS AND

AUTOMORPHIC FORMS

TALK BY FARRELL BRUMLEY

.

Abstract. We shall discuss the representation theory of SL2(R), linking it with the classical
theory of automorphic forms on the upper half-plane.

We will be talking about unitary representations in general before focusing on SL(2,R).

1. Unitary representations (in general)

Let G be a locally compact topological group.

If G is a compact Lie group, Peter-Weyl theory gives all irreducible representations (they are
finite-dimensional and unitary, what can be seen by averaging the inner product over the group).
If G is not compact, there are not “enough” finite-dimensional representations. However, infinite-
dimensional representations are much more thorny, for instance since we need to be precise about
the underlying topological vector spaces.

Definition. A unitary representation of G is a homomorphism π : G → Aut(H) (invertible
bounded linear operators), where H is a Hilbert space endowed with an inner product 〈·, ·〉 preserved
under π (in other words, π : G→ U(H)), and so that (g, v) 7→ π(g)v is continuous under the strong
topology (coming from the norm) on H.

Remarks. This definition motivates some discussion:

• Such π are sometimes called strongly continuous.
• The continuity of the action map is equivalent to“separate continuity”, in each variable: for

each g, the map v 7→ π(g)v is continuous (this is automatic since π(g) is bounded linear)
and for each v, the map g 7→ π(g)v is continuous.
• We are not asking that π : G→ Aut(H) be continuous, where Aut(H) is given the topology

induced by the operator norm. Doing so would eliminate (if G is not discrete) the right
regular representation g 7→ Rg of G on L2(G) (i.e. right translations), which is central in
harmonic analysis.

Proof. Here is why. Let U 3 1 be a compact subset and g ∈ U\{1}. Let f ∈ Cc(G)
nonnegative and ‖f‖2 = 1 such that supp(f) ∩ supp(f)g = ∅. Since Rg is unitary (with a
right invariant Haar measure), we immediately deduce ‖Rgf‖2 = 1. Then

‖Rgf − f‖22 = 〈Rgf − f,Rgf, f〉
= ‖Rgf‖22 − 2〈Rgf, f〉+ ‖f‖22 = 2
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since the supports are disjoint so that the central inner product vanishes. So that necessarily,
we have the lower bound ‖Rg − 1‖op >

√
2 > 0 for all g 6= 1. �

Definition. A representation π is said to be irreducible if there is no closed (proper, nonzero)
invariant subspaces.

Remark. Note that any unitary representation is totally reducible (i.e. semisimple): indeed,
taking an invariant subspace V , its Hilbert orthogonal complement V ⊥ would be also closed and
invariant.

Definition. An isometric interwiner between two unitary representations π, π′ : G → U(H) is
an isometry φ ∈ U(H) such that φ ◦ π = π′. We say that π and π′ are unitarily equivalent.

Let Ĝ denote the set of equivalence classes of unitarily equivalent irreducible unitary representa-
tions of G, called the unitary dual of G. It is particularly difficult to study, even for real semisimple
Lie groups.

The topology on the unitary dual is the Fell topology : π and π′ are close if their matrix coefficients
defined by ξπv,w : g 7→ 〈π(g)v, w〉 are close on compacta. The Fell topology is typically non-Hausdorff
(even in the case of SL(2,R)).

Remark. For a slightly smaller class of groups (viz. type I ), one can define a (Plancherel)

measure µPl on Ĝ, allowing to do harmonic analysis, i.e. so that we have for all f ∈ Cc(G) the
inversion formula

f(1) =

∫
Ĝ
f̂(π)dµPlπ. (1)

A typical question is: what is the support of the Plancherel measure?

Remark. In fact, even if we are only interested in unitary representations, to understand them
one must look beyond them. We shall broaden the setting of study to have a nicer, better behaved,
class of representations. One motivation is the following. We have the subrepresentation theorem of
Casselman: for G real reductive Lie group, any irreducible unitary representation can be embedded
as a subrepresentation of a (non-unitary) principal series representation (see the SL(2,R) setting).
Thus, non-unitary representations (and their subobjects) are still interesting to study.

2. The SL(2,R) case

Lemma. If π is a finite-dimensional unitary representation of SL(2,R), then π = 1.

Proof. Say π : G → U(n). By the LU decomposition let’s look only at upper-triangular matrices.
Sinca all ( 1 x

1 ) are conjugate in SL(2,R) for x > 0, one of the π ( 1 x
1 ) is in U(n). But conjugacy

classes in U(n) are closed, so that

lim
x→0

π

(
1 x

1

)
= π

(
1

1

)
= 1 (2)

is in the same conjugacy class as π ( 1 x
1 ). Thus the conjugacy class is {1}. Hence π = 1 on upper

triangular matrices. The same happens symmetrically on lower triangular matrices. And use the
fact that SL(2,R) is generated by both. �

Fact. The finite-dimensional irreducible non-unitary representations of G = SL(2,R) are the
symmetric powers Symn : G→ Aut(Pn), where Pn is the space of homogeneous polynomials in two
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variables z1, z2 of degree n, and the action is given by

Symn

((
a b
c d

)
P

)(
z1
z2

)
= P

((
a b
c d

)(
z1
z2

))
. (3)

2.1. Principal series representations. Let G = SL2(R), K = SO(2) and B = ( ? ?? ). The
Iwasawa decomposition writes G = BK. Let’s induce representations from the “big” (in the sense
that the quotient is compact) subgroup B of G. Let s ∈ C and ε ∈ {0, 1}: these will be the
parameters of the continuous series of representations.

Introduce δ
(
a b
a−1

)
= |a|2 (the modular quasicharacter, taking into account the fact that G is

not unimodular). Let

Us,ε =
{
f ∈ C∞(G) : f

((
a b
a−1

)
g
)

= sgn(a)εδ(a)1/2|a|sf(g)
}
. (4)

Define a norm (and thus an inner product) on f by

‖f‖22 =

∫
K
|f(k)|2dk. (5)

It is not unnatural, since f has a prescribed behavior under the action of B, so the leeway only
exists on K. Let Hs,ε be the Hilbert space completion of Us,ε. G acts on Hs,ε by right translations.

Lemma. We have the following:

• For s ∈ iR, the space Hs,ε is a unitary representation (for the above inner product). They
are irreducible except H0,1. They are isomorphic under s 7→ −s, inequivalent otherwise.
• For ε = 0, the space Hs,0 is unitarizable for s ∈ (−1, 1)\{0} for some other (strange) inner

product. They are irreducible. They are isomorphic under s 7→ −s, inequivalent otherwise.
• Otherwise, Hs,ε are not unitarizable.

Proof. For the irreducibility, it is enough to show that the restriction to the lower triangular sub-
group (the opposite Borel) B̄ is irreducible. For that we invoke Schur’s lemma for unitary rep-
resentations. We thus let L be a bounded linear operator commuting with the B̄-action: we
must show that L is a scalar. Functions f in the principal series representation are functions
on N\G = R2 − {0}, which are (1 + s)-homogeneous under the A-action. We may restrict
them to the line (R, 1); the resulting space is called the line model : ϕ(x) := f(x, 1). We have(
1
y 1

)
ϕ(x) = ϕ(x − y) and ( a a−1 )ϕ(x) = |a|1+sϕ(a2x). Since L commutes with the first of these

actions, L̂ acts on the Fourier transform ϕ̂ by multiplication by a bounded measurable function m.
To show that m is constant, we use the fact that L commutes with the second action to show that
m(a−2x) = m(x) for all a and almost every x. �

[Picture to be drawn someday, for each ε]

This is not the end of the story, and we still have a whole series of representations: the discrete
series. They can be found as subrepresentations (recall Casselman’s subrepresentation theorem) of
non-unitary principal series Hk,ε for k > 2, and ε ≡ k mod 2. More precisely, for integers k > 2,

0 −→ D+
k ⊕D

−
k −→ Hk−1,ε −→ Symk−2 −→ 0 (6)

and the subrepresentation splits into a holomorphic (+) discrete series and an antiholomorphic
discrete series (−). They have an explicit description. There is also the trivial representation. This
describes the whole unitary dual of SL(2,R).
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Remarks. Some remarks:

• The support of the Plancherel measure is made of the tempered unitary representations, i.e.
everything but the trivial representation and the complementary series Hs,0 for s ∈ (0, 1).
• Link to classical modular forms:

– weight zero Maass forms: Hs,0 for s ∈ iR ∪ (−1, 1)
– weight one Maass forms: Hs,1 for s ∈ iR\{0}
– weight one holomorphic modular forms: D1 = D+

1 ⊕ D−1 , limits of discrete series,
irreducible on GL(2,R)

– weight k > 2 holomorphic modular forms: Dk = D+
k ⊕D

−
k , irreducible on GL(2,R)
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